
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

RAMASSE-MIETTES GÉNÉRATIONNEL ET INCÉMENTAL GÉRANT LES CYCLES ET

LES GROS OBJETS EN UTILISANT DES FRAMES DÉLIMITÉS

MÉMOIRE

PRÉSENTÉ

COMME EXIGENCE PARTIELLE DE LA

MAÎTRISE EN INFORMATIQUE SYSTÈME

PAR

SÉBASTIEN ADAM

AVRIL 2008

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

BOUNDED FRAME, CYCLE, AND LARGE OBJECT HANDLING IN GENERATIONAL

OLDER-FIRST GARBAGE COLLECTION

THESIS

SUBMITTED

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER IN COMPUTER SCIENCE

BY

SÉBASTIEN ADAM

APRIL 2008

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 - Rév.ü1-2üÜ6). Cette autorisation stipule que «conformément à
l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à
l'Université du Québec à Montréal une licence non exclusive d'utilisation et de
publication de la totalité ou d'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise
l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une
renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

Acknowledgments

This work would not have been possible without the support and encouragement

of many people. First, l would like to thank my supervisor, Professor Étienne Gagnon,

for his guidance throughout the course of this thesis research. Without his common

sense, knowledge, and perceptiveness l would never have finished. Thanks, Étienne, for

al! your help and support! l would like to thank all the student members of the McGill

Sable Research Group for their help discussing this work. l would like to thank Gregory

Prokopski for building the scripts, for collecting empirical results and transforming the

output into various formats. l would like to thank Éric Thé and my parents-in-laws

for their support while writing my thesis. Finally, how could l thank my wife Anna

Loevenich enough for the incredible amount of patience she had with me through the

last six months, and for so much more she provided me? Thanks, thanks, thanks, and

more thanks for all of you.

Contents

List of Figures ix

List of Tables . . . xi

List of Acronyms xii

R.ésumé xiii

Abstraet . xv

1 Introduction and Contributions 1

1.1 Introduction. 1

1.1.1 Autol1latic Memory IVlanagement 1

LU Garbage Collection Algorithm . 2

1.1.:3 Carbage Collector Implementation 3

1.1.4 Garbagc Collection Costs 3

1.1.5 Larger Space and Poor Locali("Y . 4

1.l.G Customisable l'v'Iemory Tvlanager . 4

1.2 Research ;\:lotivation and Objectives 5

1.2.1 Copying Garbage Collectars 5

1.2.2 Rcsearch Frarnework 5

1.2.:3 Specifie H.esearch Objcdivcs 6

1.3 Contribut.ions 7

1.4 Thesis Organization 8

2 Garbage Collection 10

2.1 Mcmory Manager 11

v

2.1.1 lvlemory Alloc:ator 11

2.1.2 Garbage Collector 13

2.2 Points of Comparison 14

2.3 Ileferencc Counting . 17

2.4 rV[ark and Sweep .. 19

')
~.O !vlark iwd Compact. 21

2.6 Sellli-Space . 23

2.7 Gcnerational 25

2.7.1 V'/rite Barrier IVlechanisrn 27

2.7.2 Points of Cornparison 30

2.8 Incrementai 32

2.9 Conclusion 34

3 Older-First Algorithm . 35

3.1 Basie Implementation 36

3.1.1 Pointcr-'lh\'cki ng Cost 37

3.1.2 Computing the R.oot Set. 37

3.2 Poinl,s of Cornparison 38

:3.:3 Conclusion . 39

4 Improving Card l\Ilarking Using Bounded Frames. 40

4.1 'l'raditional and Bidircet.iowJ1 Objcct Layouts 40

-1.2 Bounded Frame I\larking Scherne 42

4.3 Bidirectional Layout Dependcncy 44

4.4 Writc Barrier Eiiiciency 45

4.5 Comparison with Card i'vIarking . 48

4.6 Comparison with RCl1lcmbered Set 50

4.7 Conclnsion 51

5 Dealing with Cycles, Large Garbage Structures, and Floating Garbage 52

5.1 Garbage Structnres .. 52

VI

5.1.1 Large CaIbage Structures 52

5.1.2 Cycles . 54

5.Ll Floating Carbage . 54

5.2 Providing Cornplct.cncss . 54

5.3 .\larking without Space Overhcad 55

.s.3.1 Depth-First. ~:[arking Trace 56

5.'1 Conclusion . 59

6 Dealing With Large Objects 61

6.1 Large Objeet Policies . 62

6.2 lmproving Promptncss 63

CU Large Ohject Space . 64

GA Conclusion 64

7 Generational Older-First Algorithm 66

7.1 Floatillg Garbage . 66

7.2 Giving Objects Time ta Die 66

7.3 3-GOF Collectar . 67

7.3.1 '["tacking I\.oot Pointers 69

7.3.2 Handling Large Objects 69

7.3<1 Nlarking Garbage Structures 70

7.4 Conclusion . 70

8 Depth-First Semi-Space Algorithm . 71

8.1 Dcpth-First Copying without Spac:e Overhead 72

8.1.1 Dept.h-First Copying Trace 72

8.2 Points of Camparison 75

8.3 Improving Locality 75

8.4 Conclusion 75

9 Implementation 76

VII

9.1 SableVIVI: A Virtual "\Jachinc for Execuling Java Bytccodc . 76

9.2 :vIemory Management Framework . 76

fU Available Collectors 77

9.3.1 Older-First . 77

9.3.2 Ccnerational Older-First Collcetor 79

9.4 Il,:larking Poliey 81

9.5 1:-'1111 Collect.ioll Poliey . 81

9.6 InternaI V/rite Barrier 82

9.7 Fragmentation Polie)' . 82

9.8 COlllmand Line Options 83

9.9 Conclusion 83

10 Experimental Results . 84

10.1 The Test Platforrn . 84

10.2 Benc:hrnark prograrns . 85

10.:3 Ovcral1 Mcnsurclllents 86

10.4 Performance MC(Lsun~rnellts 88

10.5 Discussion. 96

10.6 Conclusion 97

11 Related Work. 98

11.1 Carbage Colledion Algorithms 98

11.1.1 Older-First Colleetors . 99

Il.1.2 Cencrational Collectors 100

11.2 Pointer-Tracking Using C~tr(I:VIarking 102

113 Large Ohject Spaœ . 105

11.'1 Dcpth-firstPoimer TraversaI 105

11.5 Conclusion . 106

12 Future Work and Conclusions 107

12.1 Future 'Vorle . 107

Vlll

12.1.1 Memor.y J\iIanager F'ramcwork il! the Field 107

12.1.2 Profilîng l\1ernory Usage. 108

12.1.;~ Investigating Deeper Garbage Collection Techniques 108

12.1.4 Selecting Garbage Collectors Basec1 on Dynamic Observation 108

12.2 Conclusions . 109

Bibliography . 111

List of Figures

1.1 Java VirtualilIachinc Ovcrview .. 2

2.1 Root:,;, Reachable ObjccLs, and Garbagc	 14

2.2 Heap Layout. for Genemtional GC	 26

2.3 Inter-GenerationalRcferences ..	 27

2.4 IIeap Layollt for Incrementai GC	 32

3.1 Heap Layollt of the Older-First Algorithm 36

4.1 'n-aditional Object Layollt .	 41

4.2	 13idirectional Object Layout 42

4.3 l30unded Fl'ame Marking Mechanislll 43

4,4 First and Last lncoming Pointers for a. l30unded Frame 44

4..) \Vritc Barrier Pseudocode 46

4.6	 Remernbered Sets for the Bounded ftame !vIarking Method 47

4.7	 A Partially Tl'acecl Object 49

5.1	 A Large Garbage Structure Overlaying many Increments. 53

A Cydic Structure Overlaying lllany Increments 54

x

Mark without Spacc Overhead 56

5.4 Pscudocode for the ~\larking Procedure. 57

5.5 Coing Down while Marking 58

5.6 Coing Up while l"'Iarking. .. 59

6.1 Heap Layont for La.rge Objects Pohey " 63

7.1 Heap Layollt for the GOF Collector 68

8.1 Depth-First Copying wil.hout Spacc Ovcrhead . 73

8.2 Psc\l{loeode fOl' the Gopying Procedure 74

IO.l Impact of Lite Gard Size ou Performance of the Oldcr-Fir~t Collccl.or .. 91

10.2 Impact of the vVindow Size on Performances of the Older-First Collector 93

11.1 Heap Layout for a Ccnerational GC Using Can1 }"hl'king 103

List of Tables

2.1	 Points of Cornparison of Garbage Collection . 15

2.2	 Points of Comparison for R.eference Counting 18

Point:s of Comparison for Mark-and-Sweep . . 20

2.4	 Points of Cornparison for l'vIark-and-Compact 22

2.5	 Points of Comparison for Semi-Space 24

2.G	 Points of Comparison for Generational Copying 31

2.7	 Points of Comparison for IncrementaI Copying 33

:U	 Points of Comparison for Olcler-First Copying 38

9.1	 Points of Comparisolt for the Older-}7irst I\1ix Collector 78

9.2	 Points of Comparison for the Generational Olc\er-First Collector 80

10.1	 Times 1.0 Consider whell EvaJuating Carbage Collection Systems 87

10.2 GC Performance J'Vleasurements Using a Large IIeap (AMD) .. , 89

10.:3 Average Amount of Mcgahytes Traced by t,he Older-First Colleetor 92

10.4 Average Arnoultt of Megabyt,cs Copied by the Old(~r-J'ïrst Collector , 94

10.5 Responsiveness of Collectors . , , . , ' 95

1O.G Ge Performance Measurements Using a Small Heap (Pentium) 96

List of Acronyms

GC Garbage Collection

J2SE Java 2 Platform Standard Edition

JNI Java Native Interface.

JVM Java Virtual Machine.

LOS Large Object Space

SableVM Sable Virtual Machine

SOS Small Object Space

SPEC Standard Performance Evaluation Corporation.

TLB Translation Lookaside Buffer

VM Virtual Machine.

Résumé

Ces dernières années, des recherches ont été menées sur plusieurs techniques reliées

à la collection des déchets. Plusieurs découvertes centrales pour le ramassage de miettes

par copie ont été réalisées. Cependant, des améliorations sont encore possibles.

Dans ce mémoire, nous introduisons des nouvelles techniques et de nouveaux al

gorithmes pour améliorer le ramassage de miettes. En particulier, nous introduisons une

technique utilisant des cadres délimités pour marquer et retracer les pointeurs racines.

Cette technique permet un calcul efficace de l'ensemble des racines. Elle réutilise des

concepts de deux techniques existantes, card marking et remembered sets, et utilise

une configuration bidirectionelle des objets pour améliorer ces concepts en stabilisant

le surplus de mémoire utilisée et en réduisant la charge de travail lors du parcours des

pointeurs. Nous présentons aussi un algorithme pour marquer récursivement les objets

rejoignables sans utiliser de pile (eliminant le gaspillage de mémoire habituel). Nous

adaptons cet algorithme pour implémenter un ramasse-miettes copiant en profondeur

et améliorer la localité du heap. Nous améliorons l'algorithme de collection des miettes

older-first et sa version générationnelle en ajoutant une phase de marquage garantissant

la collection de toutes les miettes, incluant les structures cycliques réparties sur plusieurs

fenêtres. Finalement, nous introduisons une technique pour gérer les gros objets.

Pour tester nos idées, nous avons conçu et implémenté, dans la machine virtuelle

libre Java SableVM, un cadre de développement portable et extensible pour la collection

des miettes. Dans ce cadre, nous avons implémenté des algorithmes de collection semi

space, older-first et generational. Nos expérimentations montrent que la technique du

cadre délimité procure des performances compétitives pour plusieurs benchmarks. Elles

montrent aussi que, pour la plupart des benchmarks, notre algorithme de parcours en

profondeur améliore la localité et augmente ainsi la performance. Nos mesures de la

xiv

performance générale montrent que, utilisant nos techniques, un ramasse-miettes peut

délivrer une performance compétitive et surpasser celle des ramasses-miettes existants

pour plusieurs benchmarks.

Mots clés: Ramasse-Miettes, Machine Virtuelle, Java, SableVM

Abstract

Over the years, research has been done on several techniques related to garbage

collection. Many key insights for copying-based generational garbage collection tech

niques have been revealed. Yet, there is still room for improvement.

In this thesis, we introduce various new techniques and algorithms to improve

garbage collection. In particular, we introduce the bounded frame marking technique

for tracking pointers. This technique allows for efficient computation of the l'oot set. It

reuses concepts from two existing techniques, card marking and remembered sets, and

uses a bidirectional object layout to improve them by regulating space overhead and

reducing the pointer scanning worldoad. We also present an algorithm to recursively

mark reachable objects without using a stack (eliminating the usual space overhead).

We adapt this algorithm to implement a depth-first copying collector and increa.se heap

locality. Vve improve the older-first garbage collection algorithm and its generational

variant by adding a mark phase that guarantees the collection of all garbage, including

cyclic structures spanning many windows. Finally, we introduce a technique to deal

with large objects.

In order to test our ideas, we have designed and implemented a portable and

extensible garbage collection framework within the SableVM open source Java virtual

machine. In it, we have implemented semi-space, older-first, and genel'ational copying

garbage collection algorithms. Our experiments show that the bounded frame technique

yields competitive performances on many benchmarks. They also show that, for most

benchmarks, our depth-first traversaI algorithm improves locality and thus incl'eases

performance. Our overall performance measurements show that, using our techniques,

a garbage collector can deliver competitive performance and surpass existing collectors

on various benchmarks.

xvi

Key words: Garbage Collection, Virtual Machine, Java, SableVM

Chapter 1

Introduction and Contributions

1.1 Introduction

1.1.1 Automatic Memory Management

Modern virtual machines use automatic memory management and free the pro

grammers from explicit memory allocation and deallocation. This software engineering

principle of abstraction is the method software engineers use to manage the complexity

of systems. Hiding details from the programmers improves programming productivity.

As shown in Figure 1.1 (see [Gagnem œbJ), the memory manager module is part of

current state-of-the-art virtual machines.

Modularity is another software engineering principle that engineers use to build

extensible, reusable, and portable system components. For example, the Boehm-Demers

Weiser conservative deallocators [Boehm 01] are modules allowing C++ programmers to

allocate memory without explicitly deallocating memory that is no longer useful. Pro

grammers are increasingly choosing object-oriented languages to take advantage of these

software engineering benefits. Commonly proposed estimates are that up to 40 percent

of the development time is spend implementing memory management procedures and

debugging errors related to explicit storage [R.ovner 85].

- - - - - - -

2

Applications and Class Libraries[J
t, t

Native interface Class Loaders

,------ -
Execution engine 1 Memory manager	 1

11 ,.,

Services

Thread
Reflection
...

Java Virtual Machine

Figure 1.1 Java Virtual Machine Overview

1.1.2 Garbage Collection Algorithm

Memory allocation is often quite simple. The virtual machine allocates a large

contiguous block of memory called the heap. Every time a program request memory,

the virtual machine reduces the large block accordingly to the requested memory size.

When ail the usable memory is exhausted, the deallocation mechanism is triggered.

Memory deallocation is far more complex. Copying garbage collection is a form of

automatic memory deallocation. A garbage collector is a piece of software that recycles

unreachable memory or garbage. Current state-of-the-art Java virtual machines imple

ment advanced garbage collection techniques to deliver high-performance execution of

Java bytecode [Gagnon ü3b; IBI"! 031. Popular techniques implement both non-copying

(reference counting and mark-and-sweep) and copying (mark-and-compact, semi-space,

generational, and incremental) collectors.

3

1.1.3 Garbage Collector Implementation

A garbage collector should provide completeness, the guarantee to reclaim all

garbage eventually. On that account, standard copying collectors require a copy reserve

equal to twice the size of the maximum live data for a program. In order to provide

responsiveness, older-first and generational copying algorithms collect only a region of

the heap at a time. But sometimes they do full collections which require a copy reserve

equal to the usable memory. Sorne algorithms, as the mark-copy collection algorithm

[SachindréUl 03], use memory space more efficiently. It marks live data and always copies

a number of survivors that fit into a fixed-sized region. The mark phase, however,

requires additional space for a mark stack [Sachindran 0:3].

Collectors that partially collect the heap, track pointers that refer from one region

to another, and include these pointers in the root set. These collectors mainly use card

marking or remembered set methods to maintain their root set. Card marking increases

work scanning at collection time. On the other hand, remembered sets can have a

significant space overhead (up to 25% of the maximum live size for the mark-copy

algorithm which further does not track all pointers [Sachindran 03]).

1.1.4 Garbage Collection Costs

Current garbage collectors still have significant performance overhead [Black

burn 02a]. The costs of copying garbage collection include (1) the cost of copying

objects when they survive a collection, (2) the cost of pointer-tracking, and (3) the cost

of the interaction between the cache and memory behaviors of both the program and

the garbage collector [8 Lefimovié 99a].

Research [Hertz 05a] has shown that when physical memory is scarce, paging

causes garbage collection to l'un an order of magnitude slower than explicit memory

management. Garbage collection can degrade overall performance by nearly 70%. Over

ail performance is highly dependent upon the behavior of the application as well as on

4

the available resources.

1.1.5 Larger Space and Poor Locality

No single garbage collector enables the best performance for aIl programs and al!

heap sizes [Soman 04]. Garbage collection can comprise 35% of execution time when

the heap space is tight on sorne systems [Blackburn 02a]. The best total execution time

is not always achieved simply by using a larger heap, however. Locality may degrade

with large heaps, increasing paging and cache miss rates.

Programs often access objects of a similar age closely together [Stefanovié 9%;

Blackburn 02a]. Because copying garbage collectors move objects, they have the oppor

tunity to improve locality with consequent benefits for cache and translation loolcaside

buffer (TLB) behavior. At collection time, for an object-oriented language such as Java,

garbage collectors may execute a depth-first or a breadth-first traversaI of the object

tree to better tune memory layout for program traversa!. Static orders are problematic,

with large differences of up to 25% in total time for sorne benchmarks [HlIang 04], when

traversaI patterns do not match the collectors single order. Achieving high performance

always remains a challenge.

1.1.6 Customisable Memory Manager

Several techniques have been developed to make garbage collection feasible in

many situations, including real time applications. Optimal performance cannot always

be achieved by a uniform general purpose solution [Attardi 98].

A current general trend in software development is towards customisable systems

to give the developer greater fiexibility and control over the functionality and perfor

mance of their application. MMTk [Blackburn D4b] is an extensible framework for

building garbage collectors. MMTk uses design patterns and compiler cooperation to

combine modularity and efficiency. Beltway [Blackburn 02a] is another framework that

significantly generalizes existing copying collectors. This generality enables developers

5

to exploit a larger design space and develop better collectors.

1.2 Research Motivation and Objectives

We should note that various methods exist for memory allocation. Our research

focuses solely on copying garbage collection algorithms.

1.2.1 Copying Garbage Collectors

The main motivation behind this thesis was to study and understand sorne copying

garbage collectors. In order to address these objectives, we have implemented and tested

sorne popular algorithms for semi-space, older-first, and generational copying garbage

collection on SableVM [Gagnon 03b], an extremely portable, efficient, and specification

compliant Java virtual machine.

We have exploited the bidirectional-object layout furnished in SableVM to imple

ment new techniques for pointer tracking and object traversais. Our pointer-tracking

technique combines both card marking and remembered set methods to regulate space

overhead and reduce work scanning. We also have designed a new algorithm to mark

the object tree recursively without space overhead. We use this algorithm to imple

ment a depth-first copying collector. In this thesis we report our overall performance

measurements and show that, using our techniques, a garbage collector can deliver com

petitive collection performance and even surpass that of a traditional collector on sorne

benchmarks.

1.2.2 Research Framework

Many academic research projects have limited resources. Sometimes, the human

resources dedicated to a project are limited to a very small team of researchers. One

of the objectives of this research is the development of an openly available memory

manager framework suitable for performing research experiments with minimal effort.

In order to achieve this goal, this framework must be easily extensible, thus allowing

6

experiments with new algorithms for memory allocation and deallocation. This research

framework must also be easily portable to new platforms with minimal effort, in order

to perform experiments on a variety of systems. Finally, the memory manager must also

deliver an acceptable performance, so that experiments can be done running real-world

applications, rather than toy benchmarks.

We have designed, and implemented on SableVM [Gagnon 03b], a portable and

extensible framework for building and testing garbage collectors. SableVM provides

a logical partitioning of runtime memory that simplifies memory management. This

memory parti tioning allows SableVM to use a configurable collector to manage the

Java heap, and to use partition-specifie memory managers for the l'est. The colleetors

share all common mechanisms, palicies, and functionalities and use the exact same

implementation, allowing us ta obtain more accurate experimental results.

1.2.3 Specifie Research Objectives

Research has identified many key insights for copying garbage collection. Cur

rent state-of-the-art colleetors impiement generational [Ungar 84; Appel 89; Lin 92;

Bal<er 9:3; Cllilirnhi 98; Ali ü8; Blackburn 02a] and incremental [Deutsch 76; Baker 78;

Baker 92; Hansen 00; Hansen 02; St.cfanovic 02] algorithms and exploit data locality

[Courts 88; Chilimbi 98; Boehm 00; Blackburn 04a; Huang O'J], object lifetime [Lieber

IIlan 81; Lieberrnan 83; Hanson 90; 13arrctt 93; Inoue 03; Blackburn 07], and object

segregation [CUUlJill 86; Ungar 92; lIicks 98; Colnet 981 to provide better performances.

Current software implementations also use modulaI' design to provide extensibility and

flexibility to the developers [Blackburn 02a; Blackburn 0:3a; Blackburn 04b], even in the

presence of critical performance software. Given these key insights the specifie objectives

of this research are to:

• research new garbage collection techniques to address these key insights,

• evaluate the relative performances achievable by copying collectors implementing

7

our innovative techniques,

•	 measure the performances of the proposed techniques,

•	 design and implement a portable and easily modifiable memory manager.

A less formaI objective is to keep the framework as simple as possible, leaving the

development of more advanced techniques to future interested users of this framework.

1.3 Contributions

In this section, we list the contributions of this thesis.

One contribution of this thesis is the memory manager framework itself. Dur

ing this research, we have integrated the memory manager framework on SableVM

[Gagnon 0:31>], an open-source virtual machine for Java. We think that the clearness

and sharpness of its internaI design makes it a valuable framework for conducting re

search projects on memory manager techniques.

The 2 kinds of object layouts implemented on SableVM enable designers to explore

a larger design space and develop better collectors. The memory manager framework

has embedded debbuging and testing features suitable for the evaluation of new ideas.

Thus, the contributions of this thesis are:

•	 The introduction of an innovative technique to track pointers efficiently in presence

of a partitioned heap, without creating too much space overhead. Experiments

show that using our technique to reduce both the tracing costs and the space

overhead of the card marking and the remembered set techniques respectively, we

can engender competitive performances.

•	 The introduction of an algorithm, which exploits the bidirectional object layout

that groups together aU reference fields, ta traverse the abjects in the heap using

8

a depth-first order without space overhead. We use this algorithm to implement

the two following methods.

•	 The implementation of a method to copy objects in a depth-first order without

space overhead. Our experiments show that, exploiting the static class-oblivious

copying orders (e.g., breadth-first and depth-first), we can tune memory layout

to program traversai and improve performance, instead of always using the same

static order.

•	 The implementation of a method to mark objects without space overhead. This

method guarantees that col1ectors will collect ail garbage.

•	 The introduction of a large object policy that regroups large objects in memory

and makes assumptions about their lifetime. Our experiments show that large

object segregation yields performance improvements.

•	 The implementation of many garbage collectors which offer the developers the

ability to customise the memory manager framework on a per-application basis.

The framework allows the developers to exploit application specifie behavior, and

our experiments show that it may also improve performance. The collectors share

ail common mechanisms and provide reusable components for future implementa

tions, which improve the programming productivity and reduce the development

effort.

•	 The development and the planned public release of the memory manager research

framework.

1.4 Thesis Organization

The remainder of this thesis is structured as follows. In Chapter 2, we describe

some popular garbage collection algorithms. We also present points of comparison often

used to compare these garbage collection algorithms. In Chapter 3, we describe the

older-first algorithm in more details. In Chapter 4, we introduce a new method that

9

combines the remembered set and the card marking mechanism to improve efficiency

and precision while tracking pointers. In Chapter 5, we discuss the garbage structures

and introduce a depth-first traversai algorithm for marking objects without space over

head. In Chapter 6, we describe a technique for segregating long-lived large objects in a

space which is less often collected. In Chapter 7, we describe a generational older-first

algorithm which provides incremental collection for aIl of its generations. In Chapter

8, we introduce a depth-first semi-space copying collector that uses the objects traver

saI previously introduced to improve program locality. In Chapter 9, we discuss the

implementation of our memory manager framework. In Chapter la, we describe our ex

perimentation setting, and present our overall performance measurements. In Chapter

11, we present sorne related works. Finally, in Chapter 12, we discuss possible future

work and present our conclusions.

Chapter II

GARBAGE COLLECTION

A garbage collection system is a form of automatic memory management. It

eliminates a significant source of software defects by freeing programmers from explicit

memory allocations and deallocations. By removing the burden of explicitly reclaiming

memory from the programmer, well-known classes of errors, including dangling ref

erences and certain kinds of memory leaks, can be avoided [\Vilson 92; Wacller 87].

Collectors also improve memory modularity and programmer productivity [Rüjemo 95].

Because of these advantages, garbage collection has been incorporated as a feature in a

number of mainstream programming languages.

The implementation of an efficient garbage collector is complex. Manyalgorithms

have been proposed to provide completeness, i.e. the guarantee to reclaim garbage even

tually. Basic algorithms include mœrk-and-sweep collection [Smith 98; McCarthy 60],

semi-space copying collection [Smith 98; Feniche! 69], and generational copying collec

tion [Chen.dle 04]. Each algorithm has a number of advantages over the others. The

best performance for a program (also called a mutator) and a heap size is achieved by

selecting and properly tuning the appropriate garbage collection algorithm. In the best

case, each program should have its own garbage collector tuned specifically to meet the

program's needs and the technical restrictions of the system.

In this section, we introduce the memory manager, the allocator, and the collector.

Then we describe specifie points of comparison often used in the literature dealing with

11

garbage collection algorithms. Finally, we highlight the most popular garbage collection

algorithms. Some related constructs such as write barrier, remembered set, and card

marking are also presented. We further compare algorithms and describe some of their

implementations.

2.1 Memory Manager

The memory manager can be divided in two parts: the allocator which allocates

memory and the collector which recycles memory that the mutator is unable to reach.

This unreachable memory is also called garbage. The mechanism that recycles memory

is called garbage collection (GC).

2.1.1 Memory Allocator

Dynamic memory allocation is an important part of many programs. Unnecessary

allocation can decrease program locality and thus increase fragmentation and execution

time. A previous study [Grunwald !):3] has shown how the design of a memory allocator

can significantly affect the reference locality ofvarious applications. Their measurements

show that poor locality in sequential-fit algorithms reduces program performance, both

by increasing paging and cache miss rates.

By dynamic memory allocation, we mean that the memory for a program is

taken from a large area of previously reserved memory called the heap. The size of the

allocation can be determined at run-time. The lifetime of the allocation does not depend

on the current procedure or stack frame. The allocated memory region is accessed

indirectly, usually via a reference. The precise algorithm used to organize the memory

area and to allocate and deallocate chunks is hidden behind an abstract interface and

may use any of the methods described above. The allocator is the component of software

that dynamically allocates memory.

12

2.1.1.1 Contiguous Allocator

The basic algorithm is usually quite simple to implement. It uses a pointer to

reference the next free space in the heap. When the mutator requests some heap space,

the allocator checks if the requested space is available. If this is the case, the pointer

is simply returned and updated to reference the following unused space. Otherwise,

the collector is called to free the heap from the garbage. This is called a contiguous

allocator. In an object-oriented environment, contiguous allocators append new objects

to the end of a contiguous space by incrementing a bump pointer with the size of the

new object.

2.1.1.2 Free-List Allocator

Some systems implement a different scheme of dynamic memory allocation. Some

times, a free list is used to connect unused blocks of memory together in a linked list,

using the first word of each block as a pointer to the next. This technique is most

suitable for allocating from a memory pool, where all objects have the same size. In

such a context, free lists make the allocation and deallocation operations very simple.

To free a block, we just add it to the free list. To allocate a block, we simply remove it

from the end of the free list and use it.

In a language like Java, memory allocation is done using object size. The blocks

have variable sizes. This means that the allocator may have to search for a block that

suits its request. This operation can be very time consuming. Also, free lists have the

disadvantage of pOOl' reference locality resulting in pOOl' cache utilization. Handling the

allocation requests for large blocks is even more time consuming. It has been shown

that even algorithms attempting to be space-efficient by coalescing adjacent free blocks

show pOOl' reference locality [Grunwald 94 All these fiaws affect the benefits of space

efficiency and consequently execution time.

Another approach uses a free-list allocator that organizes memory into k size

13

segregated free-lists. Each free list is unique to a size class and is composed of blocks

of contiguous memory. An object is allocated into a free block of the smallest size class

that accommodates the object. The space-efficient free-list reduces total collector load.

However, the mutator's locality in the context of contiguous allocation provides fewer

misses at all levels of the cache hierarchy [Blackburn 04a]. As heap size increases, the

spatial locality of objects allocated close together in time is key to better performance.

In this study, we opt for the simplicity and efficiency of the contiguous allocator

strategy. The allocator is just a necessity for our work. However, we concentrate our

efforts on the deallocation mechanism.

2.1.2 Garbage Collector

Dynamic memory deallocation is as important as allocation. If reclamation is not

performed, or if some objects are accidently not reclaimed (memory leak), programs

can fail when they reach the memory size limit. The collector is the component that

deallocates memory. It determines which objects in the heap are either dead or unreach

able. It reclaims the storage used by these objects and feeds back the unused space to

the allocator. An implementation of efficient garbage collection is complex. There are

lots of algorithms aimed at collecting the heap. Each of them present advantages and

disavantages and none provide the best performances in all cases.

There exists two major classes of garbage collectors: tracing and non-tracing

collectors. Non-tracing collectors (mainly using reference counting) cannot reclaim cyclic

data structures. They are a poor fit for concurrent programming models and have a

high reference count maintenance overhead.

AH tracing collectors must trace a subset of the heap looking for reachable (or live)

objects. They start from a precomputed set of references (called the root set) for finding

reachable objects. They identify live objects by computing a transitive closure from the

roots. AlI objects unreachable directly or indirectly from the roots are considered as

garbage. In a Java virtual machine, the root set includes stack variables, registers,

14

and class variables. Figure 2.1 illustrates the concepts of roots, reachable objects, and

garbage.

Heap

U Unrc:lChahlc Objccl> (garbagel

.-.
>

J~
-êJ ~

~ Reachab1c abjecls

• Cyclic

Dala

Slructure

- Class Variables

- Slack Variables

- Regislers

Figure 2.1 Roots, Reachable Objects, and Garbage

The rest of this section describes sorne garbage collection algorithms. We first

present sorne points of comparison for garbage collection.

2.2 Points of Comparison

Users have distinct requirements of garbage collection. When choosing a partic

ular garbage collection system, we must first identify our needs and then select and

appropria.tely tune the collector that best fulfills our requirements. Table 2.1 non

exhaustively introduces sorne points of comparison for garbage collection usually found

in the literature.

Pause Time

Pause time or latency refers to the time delay between the moment a collection

is initiated and the moment it is completed. A pause is the time when an application

appears unresponsive because garbage collection is going on. When a pause happens,

15

Point ~ Meaning

Pause Time time used to collect objects
Throughput fraction of time spent in the mutator
Promptness time between when an object becomes dead and when

the memory becomes available
Completeness garbage must be completely collected

Space Overhead amount of space used to realize a garbage collection
Unused Space amount of allocatable space unused when garbage col

lection happens
Fragmentation process of memory being divided into smaller frag

ments of memory
Temporal Locality objects referenced at a nearby time are close to each

other in memory
Spatial Locality objects close to each other in memory are referenced

at a nearby time

Table 2.1 Points of Comparison of Garbage Collection

we need to trace, copy, and sometime mark objects. Pause time thus includes time for

copying, tracing, and marking.

Throughput

Throughput indicates the ratio between the mutation and application time, the

latter being the summation of both pauses and mutation time. Depending on the

context, someone may consider the right metric to be pause time. For instance, in a

real-time or interactive environment even short pauses may be intolerable. For a web

server however, the right metric is usually throughput. Pauses during garbage collection

may be obscured by network latencies.

Completeness and Fragmentation

When choosing or implementing garbage collectors, certain properties, such as

completeness to prevent memory leaks or prematured out-of-memory errors, should

be attained. Others, such as fragmentation and promptness to maintain the overall

16

performance, should carefully be considered. Fragmentation happens when different

sized memory blocks are allocated and freed repeatedly. The allocator may not find an

empty block with exactly the wanted size, so it uses a larger block. The unused part

may be used for other even smaller allocations. If this happens too often, many of these

small unused parts (or fragments) appear.

Memory fragmentation increases the amount of unused space, resulting in more

frequent collections. It also degrades the locality and the efficiency of object allocation,

introduces premature garbage collections, and may even cause a failure to satisfy an allo

cation request [Ossia 04; Barahash 03]. Thus, memory fragmentation has a big impact

on overall performance. A lack of promptness may cause fragmentation. So, alloca

tors and collectors must cautiously manage both of these criteria to avoid performance

degradation.

Space Overhead and Unused Space

On systems with limited physical memory, space overhead and unused space are

crucial concerns to observe. In such a situation, a collector with a significant space

overhead may cause an out of memory error, while another collector would still be able

to realize its collections. Even a small amount of unused space can negatively affect

throughput and consequently decrease overall performance in the presence of limited

memory.

Locality

Ali collectors are affected by locality. Many studies have been made to develop col

lectors which use locality as its primary criteria [Shuf 02; Courts 88; Huang 04; Cuyer Ckt;

Chilimbi 98; Hirzel 0:3]. Most of these locality-based collectors aim at reducing the num

ber of cache misses in order to improve overall performance. This phenomenon has long

been recognized as an important characteristic of program behaviour. Current memory

hierarchies exploit reference locality to reduce load latency and thereby improve proces

17

sor performance [ching .J II 01]. These hierarchies exploit spatial locality by fetching a

region of memory rather than just the accessed data. Caches exploit temporallocality

by retaining recently accessed cache blocks. Most cache management schemes exploit

locality to increase the fraction of memory accesses satisfied by the cache (i.e., cache hit

ratio) and thus enhance performance.

When choosing and tuning a particular garbage collection system, one has to

weigh ail these considerations. Users must understand their environment and the appli

cation's behavior and consciously manage these concerns to generate better performance.

The rest of this chapter introduces sorne algorithms which collect garbage and provides

important points of comparison for each of them.

2.3 Reference Counting

Reference counting collectors count incoming pointers for each object, and reclaim

this object when its count reaches zero. The object's reference count is incremented when

the object is referenced, and decremented when such a reference is destroyed [Collins GO].

Thus, reference counting updates reference counts on each pointer stored.

Designers typically use a free-list to allocate memory on a per-object basis, and

by doing so they allow the collector to reclaim garbage immediately. Reference counting

performs recursive deletion when an object's reference count drops to zero. Intuitively,

one can think of reference counting as operating upon dead objects; it traverses the

object graph for ward to find garbage, starting with the set of objects whose reference

counts were reduced to zero.

Table 2.2 summarizes the impacts of reference counting for comparison purposes.

Let us describe these impacts more precisely.

18

RC
Pause Time v
Throughput v
Promptness e Meaning
Completeness - (b)ad, (g)ood, (v)ery good, (e)xcellent

Space Overhead g (-) not provided, (+) provided

Unused Space b
Fragmentation b
Locality b

Table 2.2 Points of Comparison for Reference Counting

Fragmentation, Unused Space, and Locality

A memory manager which does not move objects may suifer from memory frag

mentation. Designers often implement a free-list allocator with reference counting.

Even though this technique is suitable for environments which create objects of equal

size, it may cause significant fragmentation in an environment using a language such as

Java which creates objects of variable sizes. This fragmentation implies more unused

memory. Further degradation of the locality of objects usually leads to a loss of per

formance. However, reference counting employing a proper allocation strategy usually

exploits memory space efficiently.

Throughput

Reference counting does not trace objects and often does not move them too much

thanks to a generally used free-list allocator. Thus, the deallocation is usually very fast

and yields a good throughput.

Pause Time, Space Overhead and Promptness

Reference counting produces very short pause times, which makes it suitable for

real-time applications [Blackburn o:3b]. In addition, it allows the collector to reclaim

garbage promptly. However, the cost of updating reference counts every time a root

19

pointer is updated is often much too high for high-performance mutators. Consequently,

some form of deferred reference counting has been proposed by authors which trade-off

promptness for space overhead [Deutsch 76; DeTreville 90; Bacon CHa], thus improving

overall performance at the expense of longer pauses.

Reference counting performs recursive deletions. The amount of space consumed

by a recursive traversaI increases space overhead as it is done by reference counts. The

space for the traversaI stack can be eliminated (see Chapter 5). Weizenbaum proposes

a non-recursive method for freeing [\Veizenbaurn 63]; it reduces the space overhead at

the expense of promptness.

Completeness

Reference counting inherently fails to collect cyclic garbage. If two objects refer

to each other, neither will be collected as their mutual references never let their refer

ence counts equal zero. However, some solutions such as the backup tracing collector

[Wei7,enbaurn 69] and the trial deletion algorithm [Bacon Olb; Mart.inez 90; Lins 92]

have been proposed.

2.4 Mark and Sweep

Mark refers to the marking process during which reachable objects are marked.

Unmarked objects are freed and the resulting memory is made available to the allocator

during the sweep. A mark-and-sweep collector does not move objects. It coalesces

garbage into free blocks of memory and feeds them back to a free-list allocator.

While sweeping the heap, the collector visits ail the objects including ail garbage.

For that reason, copying collectors have been usually preferred to mark-and-sweep col

lectors. Its collection time is proportional to the size of reachable data and not to heap

size [Zorn 90].

Table 2.:3 summarizes the impacts of mark-and-sweep for comparison purposes.

20

RC MS
Pause Time v g
Throughput v g
Promptness e v Meaning
Completeness - + (b)ad, (g)ood, (v)ery good, (e)xcellent

Space Overhead g v (-) not provided, (+) provided

Unused Space b b
Fragmentation b b
Locality b b

Table 2.3 Points of Comparison for Mark-and-Sweep

Let us describe these impacts in more detail.

Fragmentation, Pause Time, and Throughput

Mark-and-sweep collectors may suffer from memory fragmentation as they do

not move objects. Often, designers implement algorithms to compact objects during

a collection to recover from fragmentation (see Section 2.:"5). This strategy usually

produces longer pauses. Mark-and-sweep collectors generally provide good program

throughput and short pause times, however [Hertz 05b]. One of their disadvantages is

that collecting overhead is proportional to the size of memory, which can be large in

modern systems [Zorn 90].

In [Den-Yitzhak 02], the authors propose a technique to reduce pause times. Their

collector incrementally compacts small regions of the heap via copying. However, it uses

additional space during compacting to store root set entries therefore increasing space

overhead. It also requires many marking passes over the heap in order to compact it

completely. This can lead to poor performance and poor throughput.

Locality, Unused Space, and Space Overhead

Mark-and-sweep collectors use free-list allocators which often provide poor object

locality and bad memory use. However, a proper allocator may exploit the memory

21

space efficiently.

A mark-and-sweep algorithm combined with a compacting strategy improves the

spatiallocality of objects and reduces the amount of unused space. Compacting strate

gies require object relocation and add space and performance overhead to the algorithm

[Jones 96]. Nonetheless, mark-and-sweep collectors do not need a copy reserve to hoId

survivors of a collection. This minimizes the space overhead, although the recursive

traversaI during the marking phase incurs a space overhead (see Chapter 5).

Completeness and Promptness

The mark phase visits aH reachable objects and marks them as live. The sweep

phase passes through aH objects in memory, adding those not marked to the allocator's

free-list. A mark-and-sweep algorithm does not reclaim dead objects as fast as reference

counting does, but it reclaims them completely by marking all of the live objects.

2.5 Mark and Compact

Many systems carefully avoid fragmentation to maintain a good level of perfor

mance. There exists a negative correlation between memory fragmentation and overall

performance. Allocation policies, such as free-lists, may increase fragmentation as well

as collection strategies, such as mark-and-sweep. AlI collectors should have a strategy

to combat memory fragmentation. Two strategies commonly used by collectors are

compacting and copying. Let us first describe the compacting strategy followed by the

copying strategy.

Compacting normally consists of two major activities: moving objects and updat

ing their references. Collectors which implement a compacting strategy move objects

to reduce fragmentation. They sIide live objects toward one end of the heap to create

a large contiguous free area at the other end. In this process, they update all of the

object 's references to refer to their new locations.

22

RC MS MC
Pause Time v g b
Throughput v g b
Promptness e v v Meaning
Completeness - + + (b)acI, (g)ood, (v)ery good, (e)xcellent

Space Overhead g v g (-) not provided 1 (+) provided
Unused Space b b e
Fragmentation b b e
Locality b b v

Table 2.4 Points of Comparison for Mark-and-Compact

Fragmentation may happen with many garbage collection algorithms. Compact

ing is often an efficient way of reducing fragmentation when using a mark-and-sweep

collector [Ossia 04]. However, the collector usually visits ail the live objects twice dur

ing a collection; it passes through all the live objects to mark them, and then visits

them again to update their references. This may result in an important performance

overhead.

Table 2.4 summarizes the impacts of the mark-and-compact collector for compar

ison purposes. Now, let us describe these impacts in more detai1.

Fragmentation, Pause Time, and Throughput

Collectors compact objects at the expense of longer pauses. Sorne authors [Darabash Oil;

Ossia 04] propose a method of executing reference updating concurrently with the mark

phase, thus eliminating a substantial portion of the pause times. Nevertheless, this

method is detrimental to the throughput of the mutator and is most suitable when

added to a mark-and-sweep garbage collectaI'.

Space Overhead

A mark-and-compact collector does not need a copy reserve to maintain survivors.

This minimizes the space overhead. Nonetheless, the collector recursively traverses the

23

tree of objects during the mark phase. This recursive traversai may produce sorne space

overhead (see Chapter 5). Mark-and-compact collectors often maintain a table of offsets

to realize the relocation of objects [Jones 96), thus increasing memory pressure.

Zorn [Zorn !JO] proposes to simplify updating moved objects by adding a level of

indirection to ail object references. Object references refer to a table of object handles,

which refer to the actual objects in the heap. When an object is moved, only its object

handle shall be updated. This approach adds a notable space and performance overhead.

Locality and Unused Space

Mark-and-compact collectors almost completely eliminate the amount of memory

unused by compacting. Furthermore, they preserve the locality of objects allocated

closely in time. Compacting collectors do not reorder objects. Consequently, mutators

accessing objects allocated together usually obtain a better overall performance.

Completeness and Promptness

A mark-and-compact collector reclaims garbage completely as it marks live ob

jects. It also recycles dead objects promptly, not with delays as reference counting

does.

2.6 Semi-Space

Semi-space collectors [Cheney 70; Blackburn 02a] are the simplest copying collec

tors. Ali copying col!ectors must reserve sufficient memory to maintain al! the possible

survivors of a collection. This reserve must be large enough to accommodate the worst

case scenario, which happens when al! objects survive. At collection time, copying

garbage collectors move ail live objects to the copy reserve. The memory collected is

then recycled and fed back to a contiguous al1ocator.

Copying COllectors are often called stop-and-copy col!ectors as they stop the exe

24

RC MS MC SS
Pause Time v g b b
Throughput v g b g
Promptness e v v v Meaning
Completeness - + + + (b)ad, (g)ood, (v)ery good, (e)xcellent

Space Overhead g v g b (-) not provided, (+) provided

Unused Space b b e e
Fragmentation b b e e
Locality b b v v

Table 2.5 Points of Comparison for Semi-Space

cution of the mutator while copying. Objects are allocated until ail the usable space in

the area has been exhausted. Program execution is then stopped and the heap is visited.

Live objects are copied to the copy reserve as they are encountered during the traversaI.

Program execution resumes only when the copy procedure is finished. Memory is then

allocated from the area which holds the survivors, and the other free area becomes the

copy reserve.

Objects are copied as they are discovered during the traversai from the root set.

While objects are copied to the copy reserve, forwarding pointers are left in their old

locations. The abjects encountered later in the traversai, that refer to already copied

abjects, can use the forwarding pointers to obtain the new locations of the copied

objects. A simple test can establish whether a pointer refers to the old or the new

region of memory.

Table 2.5 summarizes the impacts of semi-space for comparison purposes. We

describe now these impacts in more detail.

Fragmentation and Locality

Semi-Space collectors place live objects side by side into the copy reserve during

copying. By doing so, they eliminate fragmentation and further improve spaciallocality.

However, they reorder objects as they follow pointers breadth-first or depth-first instead

25

of in order of age. This reordering may engender a locality that does not fit the access

pattern of the mutator, and consequently degrade the overall performance. We shall

investigate this problem in Chapter 8.

Space Overhead and Unused Space

Semi-space collectors fail to minimize space overhead. They need a copy reserve

that consumes half of the heap space. Collector designers propose new algorithms

which uses the memory more efficiently. Generational and incremental collectors have

emerged among other solutions. We present them in sections 2.7 and 2.8 respectively.

There remains an unused space at the end of the usable memory when a collection is

triggered.

Throughput and Pause Time

Semi-space collectors provide a good throughput when the heap is correctly sized.

When the heap is too small, the collector collects too often, thus the throughput de

grades. When the heap is excessively large, its collection requires more time causing

longer mutator pauses. Pauses, however, are generally long because every collection

must trace ail the reachable objects.

Completeness and Promptness

During every collection, semi-space collectors copy ail live objects into the copy

reserve. They feed back the memory holding ail dead objects to the allocator. Thus

they reclaim ail garbage completely. After each collection the heap contains live objects

only. However, it recycles dead objects less promptly than reference counting does.

2.7 Generational

Generational collectors divide the heap into regions independently collected. A

region contains objects of similar age and is referred to as a generation. The youngest

26

generation, where newly created objects are recorded, is known as the nursery. The

older generations, holding collection's survivors, are usually referred to as the mature

space.

Figure 2.2 presents a typical heap organization for a generational garbage collec

tion. It shows a heap holding three generations. Distinct systems may require more or

fewer generations. All generations may have distinct sizes tUngar 84; Appel 89; Black

burn 02a].

Nursery Mamre
<- - - - - - - - - -:;>-.q. ->

Free Spaee

Alloealed Objects

Generation
Younger Older Boundaries

Figure 2.2 Heap Layout for Generational GC

The generational algorithm exploits the weak generational hypothesis, which as

serts that most object die young [Hayes 91]. On that account, the algorithm most

frequently recycles the nursery. It collects less often the older spaces assuming that

older objects live longer. By doing so, it usually reduces copying costs and improves

performance.

A generation is the unit of generational collection. At least one generation, always

the nursery, is available for allocation after every collection. Sometimes two or more gen

erations are collected at once. In many virtual machines the Java method System.gc()

launches a full collection which scavenges all the heap for garbage [IBI"! O:i; Gagnon O:ib].

Most generational collectors interact with a contiguous allocator that places new

objects into the nursery. They mainly use the semi-space algorithm to collect the

youngest generation and copy all nursery survivors into the copy reserve of the older

generation. Generational collectors may use other algorithms to collect the mature

space.

27

2.7.1 Write Barrier Mechanism

In order to collect generations independently, generational collectors use a write

barrier which keeps track of the inter-generational references. These references, while

collecting, are used as roots. At every statement which stores a reference into an object

field, the write barrier updates an inter-generational reference data structure, called

the remembered set. The latter provides the collector all the references from objects

in older generations to objects in younger generations. The references from younger to

older objects or from and to same-aged objects are usually not remembered as younger

objects are collected before older ones (see Figure 2.:3).

Free Space

Allocaled Objecls

Inter-Generational

Youngesl
1
1 Middle-Aged : Oldesl References

Generation 1 Generation 1 Generation -... Remembered

- - - - - - NOl Rcmembered

Figure 2.3 Inter-Generational References

The write barrier mechanism maintains remembered sets to avoid scanning the

entire heap at collection time. During collection, the collector conservatively assumes

that any remembered pointer refers to an object that the mutator can reach. Instead

of tracing aH the heap to find reachable objects, the collector sequentially visits all the

references used as roots for the generation being collected.

Since the write barrier is called by the mutator after each reference is stored

into the heap, this mechanism is very expensive. The global performance depends

on the frequency of pointer stores, the number of stores remembered, and the ben

efits from independently scavenging regions. Altogether these tradeoffs improve per

formance because the pointer-tracking cost is offset by a much reduced copying cost

28

[,)l.ee:' ((tnOVle., CjC), . e; 'l'arcf"ltl.:()3] .

Blackburn decomposes the write barrier into two parts: the fast path and the slow

path [Blackburn 02b]. The fast path is typically short. It determines if the collector

needs to remember a pointer update. The slow path records the pointer only when

necessary. The write barrier implementation depends on the remembered set scheme,

and often uses many instructions [Holzle 93; \Vilson 89<1]. To reduce the write barrier

cost, sorne collectors try to minimize the number of remembered pointer stores [Appel 89;

Stefanovié 99bl. Other collectors use an imprecise remembered set to trade off scanning

time for a simpler unconditional barrier [Azagury 98; V/ilson 89a].

2.7.1.1 Remembered Set

Many garbage collection systems depend on partitioning objects and need to

handle references between various partitions. Keeping track of such references in a

remembered set eliminates the need to scan the originating partition to find them.

Such a system may vary in precision: an imprecise system requires the collector to do

more work while tracing. Generally, a more precise remembered set requires a more

elaborate write barrier.

We usually associate a remembered set with each generation tUngar 84]. Any

pointer stored that creates a reference from an aider generation to a younger generation

is recorded in the remembered set of the younger generation. At collection time, the

remembered set of the collected generation is scanned. Each pointer in the remembered

set is considered a root. Maintenance of this set is done by the mutator and by the

collector when abjects are promoted [Jones 96; 'vVilson 92]. Since this approach has an

unbounded space overhead [Hosking 92; Hertz ü5b], sorne studies have been done to

provide alternatives.

As described by Hosking, Moss, and Stefanovic in [Hosking 92], one general ap

proach is to keep all the tracked references in the remembered set. At collection time,

the collector uses and rebuilds the remembered set, discarding any entries that do not

29

contain interesting pointers. Such entries can appear when a running system is im

precise about what is considered interesting, or when later changes override interesting

pointers with uninteresting data.

As mentioned by the authors, an imprecise system attempts to put too many

entries into the remembered set rather than too few. The system must allow the collector

to find all the interesting pointers. A naive implementation of this technique may lead

to an important space overhead. In the worst case scenario, the remembered set size

can grow to be as large as the heap itself [Sac:hindran 04]. One strategy they propose

implements the remembered set as a circular hashtable using linear hashing. They filter

all pointer stores to keep only the interesting roots in the remembered set.

Advantages and Drawbacks

The advantage is that this strategy eliminates duplicated entries and bounds and

can reduce space overhead even if only a portion of the table is full. Another apparent

advantage of remembered sets is their conciseness and accuracy. A drawback is that

the system may have to do a circular search to find an empty slot. This linear search

must be added to the filtering and hashing processes, which respectively eliminate un

interesting pointer stores and duplicates. The overall performance is markedly affected.

However, remembered sets countervail this ftaw by allowing less root processing than

other schemes do.

2.7.1.2 Card Marking

Many current systems use an efficient write barrier and maintain an imprecise

remembered set. Card marking techniques maintain imprecise remembered sets [Aza

gury 98; lIo:sking 93; Wilson 89a]. Card marking partitions the heap into cards of equal

size. Whenever the mutator modifies an object in a card, the card is marked as dirty.

At collection time, the collector must scan all dirty cards to find the inter-generational

pointers. This technique has the advantage of causing a fixed space overhead, unlike the

30

unbounded remembered set. However, it increases the tracing cost since the collector

must trace ail the dirty cards in order to find the roots.

Advantages and Drawbacks

Ali the card marking mechanisms have the benefit of fixing and at times reducing

the space overhead required for recording inter-generational pointers. By uncondition

ally setting the appropriate table's entry at each store in the heap, we also improve

barrier time. We defer the cost of checking references until scavenge time and check

each location only once for each scavenge.

Systems need to scan more space in order to find the roots in the marked cards.

Cards are unmarked only when they are collected. A marked card is scanned repeatedly.

Depending of the size of the card, a lot of space is being traced needlessly thus increasing

tracing cost. This strategy also constrains the allocator to place objects within the

boundaries of a cardo We must ensure that the first word of a card is a header word

which allows collection. There is unused space at the end of each cardo The object size

is also bounded by the card size.

2.7.2 Points of Comparison

Table 2.fJ summarizes the effects of generational copying for comparison purposes.

Now, let us describe them in more detai1.

Completeness and Promptness

Sorne systems collect the oldest generation with a mark-and-compact algorithm,

others use mark-and-sweep, even reference counting is occasionally applied. Not ail

these techniques ensure the completeness of the collectors. Designers must pay close

attention to ensure that ail dead objects are reclaimed at sorne point in time.

Older generations are visited less often than the nursery, and dead objects may

31

RC MS MC SS GC
Pause Time v g b b v
Throughput v g b g g
Promptness e v v v b
Completeness - + + + -

Space Overhead g v g b b
Unused Space b b e e v
Fragmentation b b e e g
Locali ty b b v v g

Meaning

(b)ad, (g)ood, (v)ery good, (e)xcellent

(-) not provided, (+) provided

Table 2.6 Points of Comparison for Generational Copying

not be recycled promptly. In Chapter 5 we present a new technique to mark live ob

jects. In Chapter 7 we use this technique to provide promptness and completeness in a

generational context.

Fragmentation, Locality, and Unused Space

Generational collectors minimize fragmentation and provide spacial locality as

they place survivors side by side after the collection of a generation. They often collect

the oldest generation using a non-moving algorithm, producing sorne fragmentation,

reducing spacial locality, and increasing the amount of unused space. The amount of

unused memory increases when generational collectors use card marking as the size of

cards limits the size of objects allocated in the heap [Azag1lf}' 98; Hosking 93; Wil

son 89a].

Pause Time, Space Overhead, and Throughput

Generational collectors reduce the average pause time. They do not collect ail of

the heap. They reclaim younger objects regularly and older ones less regularly since

older objects are presumed to live longer. There remains an unused space at the end

32

of the usable memory of each generation when a collection is performed. Properly

tuned generational collectors provide good throughput. However, older objects survive

into older generations. The latter are typically larger and eventually require collection.

Collecting older generations worsens latency and throughput. Generational collectors

do not ensure constant throughput and maximum pause times.

2.8 IncrementaI

Stop-the-world algorithms, as proposed by Cheney [Cheney 70j, completely hait

execution of the mutator to perform a collection. Stopping the mutation guarantees

that objects are not allocated or do not suddenly become unreachable while the col

lector is running. The fact that the mutator can perform no work while a collection is

processing is a disadvantage. Within the context of interactive or real-time systems or

when maintaining a large heap, such a pause may become intolerable.

Incrementai garbage collectors are designed to reduce this disruption by interleav

ing their work with the activity of the mutator. Instead of scavenging the entire heap

at once, collectors divide the heap into increments, which are usually equal-sized and

independently collected. A possible heap shape for this scheme is shown in Figure 2.4.

Increments are contiguously illustrated but this is not a requisite.

Increment Copy Reserve
<:----------> <---------->

" ~ Free Space
"
"
" A\localed übjecls
"
"
"

Figure 2.4 Heap Layout for Incrementai GC

The number of increments may vary from one system to another. An increment

is always the unit of collection. At least one increment is made available for allocation

after each collection. Many increments can be collected and consequently freed at once.

Unlike the generational collection, the incrementa! algorithm does not constrain

33

RC MS MC SS GC IC
Pause Time v g b b v v
Throughput v g b g g v
Promptness e v v v b g
Completeness - + + + - -

Space Overhead g v g b b v
Unused Space b b e e v g
Fragmentation b b e e g v
Locality b b v v g g

Meaning

(b)ad, (g)ood, (v)ery good, (e)xcellent

(-) Ilot provided, (+) provided

Table 2.7 Points of Comparison for IncrementaI Copying

the allocator to place new objects within a particular increment. Objects can be al

located into any increment. Collectors often use a copying strategy to scavenge each

increment [Bishop 75; Hudsol1 92; iVlosi:i 96; 1":[ul1ro 99; Blackburn 02a]. Survivors are

copied into another increment. All increments are repeatedly filled and collected using

the same algorithm. IncrementaI collectors, like generational ones, need to keep track

of pointers between increments in order to reduce tracing costs. A remembered set is

maintained for each increment while processing.

Table 2.7 surveys the impacts of incremental copying for comparison purposes.

We describe them now in more detail.

Completeness and Promptness

IncrementaI collectors have a disadvantage: they do not ensure the collection of

cyclic structures. The incremental copying collector proposed in Chapter 4 reclaims

garbage completely. Since each increment is collected in turn, dead objects are not

always recycled promptly. The incremental collector, as depicted above, visits each

increment as often as the other increments. Thus, it may reclaim garbage more quickly

than generational collectors. In Chapter 5 we present a new technique to mark live

34

objects.In Chapter 4 we use this technique to provide promptness and completeness in

an incremental context.

Fragmentation, Locality, and Unused Space

IncrementaI collectors minimize fragmentation and provide spaciallocality as they

place survivors of a collection side by side. There is some unused space at the end of

each increment. This unused space may increase when incremental collectors use a card

marking mechanism.

Pause Time, Space Overhead, and Throughput

IncrementaI collectors reduce the average pause time as they partly collect the

heap. They need to reserve less space than semi-space collectors to maintain survivors

and thus reduce space overhead. Finally, they usually provide a very good throughput

by collecting small increments at once.

2.9 Conclusion

In this chapter we described concepts of such as a mutator, a memory manager,

an allocator, and a collector. We further presented the concepts of roots, garbage,

and live objects. We presented points of comparison often used in the literature on

garbage collection. Some popular garbage collection algorithms have been detailed and

compared. Finally, some related constructs as the write barrier, the remembered set,

and card marking have also been presented.

Chapter III

OLDER-FIRST ALGORITHM

Bishop's work [Bishop 75] introduced the idea of collecting memory incrementally.

He describes a technique to divide the memory into many areas and uses remembered

sets to track references between them. His collector is able to collect large structures

by migrating objects to areas containing references to these objects and by imposing no

bounds on the sizes of the areas. It then becomes straightforward to collect a structure

isolated within a single area or even cyclic garbage structures (see Chapter 5).

The train algorithm, as first proposed by Hudson and Moss [Hudson 92], also

implements an incremental collection. It addresses a weakness found in generational

collection algorithms which results in long and disruptive pauses when collecting the

oldest generation. The basic idea is to divide the oldest generation into equal-sized

increments and collect them independently. Increments, also called cars, are logically

linked into diverse trains, which symbolize lists of cars. Trains are then linearly ordered

and collected in turn. The order of the trains refiects the moment in time of their

creation from oldest to youngest. Cars, added to a given train as objects, either leave

or join the train.

The interest in this technique l'esides in its capacity to bound the size of the train

being collected at any one step. This capacity gives the authors the hope of restraining

pause times. The ability to collect large and cyclic garbage structures is guaranteed

through conscious placement policies that retain a proper logical ordering of the trains.

36

Seligmann and Grarup have implemented and studied this algorithm [8c!igmanll 951.
Extensions have also been proposed for persistent [Moss 96; Munro 99] and distributed

[Hudson 97] environments.

Other collectors also use incremental algorithms. The older-first collectors [Ste

fnnovié 99(1; Stefanovic 02] segregate objects by age into a number of equal-sized windows

(or increments) which they collect one by one from the older to the younger objects.

Older-first collectors avoid copying the youngest objects, which have not yet had enough

time to die. Many implementations of the older-first algorithm have been proposed over

the years. In this chapter we carefully examine this incremental algorithm.

3.1 Basic Implementation

Figure :U presents the possible shape of a heap worked on using an older-first

algorithm. It helps to visualize a first-in-first-out circular queue of windows. The first

window containing the older objects is next in line to be collected. Collections always

happen at the head of the queue when objects consume ail usable memory excluding

the unusable copy reserve.

Bcforc [heWindow Copy Reserve
Collection ~---------> Free Space

I~.nlmn~.n::----~ :.m :1 Allocated abjects
l " " ',~ J
1 1. .', " './ 1

l " " " 1

l " " " 1

o NcXl Collec«d abjects
1 1~ " " J 1... ------ - - - -' .. - - - - - - - - - - -' ... - -..;; - ------ - -' ... - - - - - - - - - - -' o NCXI Allocalcd Memory
aides, Youngcst

Arlcr lheCopy Reserve
4---------> Collection

1:'::~'··j·mT--'·":·I'::'···'~1
: ,/ ',::: 1 :: . :: :
, . ',' '. '1 '
, " " " 1
.: -- -- .'..'. .:'.::.. +. _ ----- _ .' .. _--- - - - - - - .'

Youngcsl Oldcst
Surviyo~

Figure 3.1 Heap Layout of the Older-First Algorithm

The leading window becomes the trailing one after its collection, the second win

dow becomes the next to be collected, and so on. Windows are collected in circular

37

fashion. The tail always contains new allocated objects and survivors, which are equal

aged in the older-first algorithm. In [Blackburn 02a] the algorithm is named older-first

mix by the authors as survivors and newly allocated objects are mixed together in

memory.

3.1.1 Pointer-Tracking Cost

Collecting less than the whole heap requires tracking pointers into the collected

region. The older-first collector uses write barrier mechanisms to compute the root set

of each window. This usually results in much higher pointer-tracking costs than gen

erational algorithms. The latter divide the heap into a number of generations. This

number is usually less than the number of windows provided by older-first collectors.

More boundaries make the write barrier remember more pointers, consequently increas

ing pointer-tracking costs.

Stefanovic, McKinley, and Moss [Stefanovié 9gb] have found that most pointer

stores are among the youngest objects as weil as among the objects they point to.

Collecting regions outside the youngest objects causes more pointer tracking. They

show that older-first collectors give objects more time to die. They do not collect the

youngest objects which clearly are still alive. This results in much lower copying costs.

The authors state that older-first algorithms usually have a total cost lower than the

total cost of generational algorithms. The total cost refers to combined costs of the

pointer tracking and copying collection phases.

3.1.2 Computing the Root Set

Remembered set strategies can significantly amplify space overhead. Older-first

collectors generally record more pointers than generational collectors. If duplicated en

tries are not rejected, the size of the remembered sets may become problematic. This

space overhead may even lead to a system failure. For example, the mark-copy algo

rithm have a space overhead representing up to 25% of the maximum live memory size

38

RC MS MC SS GC lC OF
Pause Time v g b b v v v
Throughput v g b g g v v
Promptness e v v v b g g
Completeness - + + + - - -
Space Overhead g v g b b v v
Unused Space b b e e v g g
Fragmentation b b e e g v v
Locality b b v v g g g

Meaning
(b)ad, (g)ood, (v)ery good, (e)xcellent

(-) not provided, (+) provided

Table 3.1 Points of Comparison for Older-First Copying

[Sachind1'8n (n]. Although remembered sets increase space overhead, designers use this

technique for gaining time, as earlier experience suggests [Hosking 92; Blackburn 02a].

Card marking mechanisms have the benefit of l'educing and fixing the root set

size, thus the space overhead as weIl. Collectors often mark cards unconditionally to

reduce time overhead. Since the older-first algorithm increases the number of pointers

tracked, it pays off to simplify the write barrier. The barrier cost is reduced by using

card marking. The imprecision of this mechanism increases tracing costs.

3.2 Points of Comparison

Table :1.1 surveys the impacts of older-first copying for comparison purposes. We

describe them now in more detail.

Older-first algorithms provide aIl the characteristics of incremental garbage col

lection. They have short and constant pause times, reduced copying costs, less space

overhead, fragmentation, and locality. However, older-first collectors visit the whole

heap more regularly than generational collectors. This may decrease its locality in the

cache and increase its paging activity [Stefanovié 9gb].

39

Older-first collectors improve responsiveness by reducing average pause times.

The problem is that they do not provide completeness, causing memory leaks when

cyclic and large garbage structures infest the heap. In Chapter 5 we present a technique

to recycle garbage completely in a partitioned heap.

3.3 Conclusion

In this chapter we presented a basic implementation of the older-first algorithm.

We explained how the algorithm negatively affects pointer-tracking costs as it col!ects

less than the whole heap. We discussed the strategies (remembered set and card mark

ing) available for computing the root set. We also briefly discussed the points of com

paI'ison for this algorithm.

Chapter IV

IMPROVING CARD MARKING USING BOUNDED FRAMES

In this section we present a new implementation of the older-first algorithm which

uses a bounded frame marking scheme as the remembered set. We first introduce the

bidirectional object layout exploited in our algorithm. We then present our remembered

set approach. Next, we talk about the necessity to use the bidirectional object layout

with our approach. We then discuss the efficiency of our write barrier, which maintains

the remembered set. Finally, we explore existing remembered set approaches, their

advantages and disadvantages, and the interests and drawbacks of our implementation.

4.1 Traditional and Bidirectional Object Layouts

Many studies have demonstrated that the layout of an object exerts an influence

on its environment. Among other consequences, it can affect the execution time as

weil as the algorithm design. For instance, the object layout has been investigated as a

means to provide efficient access to instance data and dispatch information in languages

supporting multiple inheritance (most specifically C++) [lvIyers 9-5; Pugh 90]. Someone

else has proposed a garbage collector which requires grouping pointers at the head of

structures [Bartlett 88]. Gagnon has introduced a new object layout that optimizes the

placement of reference fields to allow efficient garbage collection tracing [Gl'I,gnon 02a].

The most exploited object layout is the traditionallayout. However, the bounded frame

marking method that we present next uses the bidirectional layout. Then we present

both object layouts: traditional and bidirectional.

41

In the traditional layout the fields are laid out consecutively after the object

header, starting with super-class fields then subclass fields, as shown in Figure 4.1.

Reference Field , ,
,

\ ,

Non-Reference Field ,
\ Fields of
, , ,

class B

Reference Field ,

lncreasing

Memory

Addresses r
Reference Field

Non-Reference Field

, ,
\ , ,

\ , ,

,

Fields of

Non-Reference Field

Reference Field

, , , ,

c1ass A

Objecl Object Header
Reference ..

Figure 4.1 Traditional Object Layout

When tracing such an object, the garbage collector must access the object's class

information to obtain the offsets of its reference fields, then access the superclass infor

mation to obtain the offsets of its reference fields, and so on. Since this process must

be repeated for each traced object, it becomes quite expensive [Gagnon 038.].

The bidirectional object layout was first introduced in SableVM [Gagnon œb;

Gagnon 02a; Gagnon 03;),], a research framework for efficient execution of Java bytecode.

This layout groups aB reference fields consecutively in front of the object header and

aB non-reference fields toBowing the object header. The garbage collector is then freed

of the burden of accessing the object's class information in order to obtain the offsets

of its reference fields. In array instances, elements are placed in front or after the anay

instance header, depending on whether the element is a reference or a non-reference

type. Figure 4.2 shows the bidirectionallayout of an abject.

With bidirectionallayout, an object can be reached by a tracing collector through

a reference that points to the object header or through the starting point of that object.

42

Fields of
Non-Reference Field c1ass B

Increasing

Memory Non-Reference Field Fields of
Addresses t c1ass A

Non-Reference Field

Object abject Header

Reference
 •

Reference Field Fields of
, c1ass A

Reference Field ,
Object Reference Field

" Fields ofSlarting

Point Reference Field , c1ass B

•

Figure 4.2 Bidirectional Object Layout

In the second case, the starting point might be either a reference field or the object

header itself. At this point, the collector determines whether the initial ward is a

reference or a header word. If the last bit of the word equals 1, then the word is a

header word. If it is zero, then the word is a reference since al! references are aligned in

memory.

While scanning the heap, the collector only needs to read words consecutively.

It then checks the last bit of each ward. When that bit is set to zero, the reference is

traced. When it is set to 1 (i.e. object header), the end offset of the object is computed

in order to find the starting point of the next object.

4.2 Bounded Frame Marking Scheme

Our older-first garbage collector exploits the bidirectional object layout to im

prove efficiency and precision when remembering inter-window references. We propose

a method that combines the remembered set and card marking mechanism in a new

way.

In our implementation, the windows are subdivided into many cards as proposed

43

by the card marking mechanism. But, the new idea behind our bounded frame marking

technique is to keep two pointers for each card in a remembered set. This pair of pointers

represents the first and last remembered pointers for a cardo We use the addresses of

each pointer to order them from first to last. The first pointer has the lowest address

in a card and the last has the highest. Figure 4.3 represents our improved older-first

garbage collector implementing the bounded frame marking mechanism.

Window Card
<- - - - - - - - - ->

Free Space
1 .1' ,1. / , .1, 1:0----0- ---,- ---0- ~ ---0- --. -0- --:---Œ---:~~- --:~D-:-0- --:~D- ---0
l ,1.

~ __ ::': _:: __~~~:
" / / •.

:__ 1~_~
,1. .

~_._ J~ _~
1

~
Allocaled Objecls

~ Bounded Frame

lÉ -gl Pair Of Pointers
'" "
-> First & LaSl

Pointers

Remembered set

for lhe firsl window

Figure 4.3 Bounded Frame Marking Mechanism

As you can deduce when observing Figure 4.3, each window has its own remem

bered set. The first window's remembered set is presented in the figure. This remem

bered set contains many pairs of pointers, one for each card in the heap. Each pair keeps

track of the first and last pointers in the corresponding card that potentially points into

the first window.

At collection time, the collector traces each card from the first to the last re

membered incoming pointers for the window being collected. These pointers determine

the region that must be traced into the cardo We cali this region a frame. Since the

first and last pointers always belong to the card, we say that the frame is bounded

by this cardo When the last pointer is lower in value than the first one, the card is

considered unmarked. Then, our bounded frame marking technique combines the card

and remembered set mechanism by using cards to bound frames and pointers to delimit

frames.

44

4.3 Bidirectional Layout Dependency

Our mechanism depends on the bidirectional object layout. Remember that the

bidirectional object layout lays out all the references in front of the object header while

the traditionallayout spread them aftel' the object header with the non-reference fields.

We should also remember that our mechanism maintains, for each window, a

remembered set that keeps track of incoming pointers. To be more precise, what we save

in the remembered set is the address of the first and last incoming pointers. Figure 4A

shows this facto

Free Space

Allocated Objects

li 1, ," Il .,1 1 1 ~~o----0---rr- ---~---O-, / Il ---0- --'-'~O- ---,-- -'~~-1, ---'~O- --0- ---0---0- Bounded Frame 1; ., 1. 1

lê -g1Pair Of Pointers~ C J~ ' ~ _:r:~ ~:__'__ ,J~ _'~ _~/_~ _~ __ J '" .,
-----.... Address Of Roots

- - • Roots

Figure 4.4 First and Last Incoming Pointers for a Bounded Frame

When the collector traces a frame to find the roots of l'eacheable objects in the

window being collected, it starts at the address of the first remembered pointer and

stops at the address of the last one. While scanning the frame, the collector needs only

to read words consecutively and check the last bit of each word as previously explained.

Ali the reference fields between the first and last remembered pointers are traced,

In Figure 4.4, the collector finds three roots in the first frame and one in the second.

\iVhen a header word is found, we use it to skip all subsequent non-reference fields by

computing the starting point of the next object. This starting point always refers to a

reference field or a header word.

45

With the bidirectional object layout we are sure that the word after the first

remembered pointer is either a reference field or a header word. But, the problem

with the traditional object layout is that it cannot ensure what comes before and after

the first remembered pointer. Thus, the collector cannot determine if the subsequent

word is a reference field, a non-reference field, or a header word. This limitation of the

traditional object layout does not allow the collector to scan the memory frames. So

our method is dependent on the bidirectional object layout.

4.4 Write Barrier Efficiency

The older-first algorithm is incremental. So, to collect each increment indepen

dently we have no choice but to track the inter-window pointers. At collection time, we

use these tracked references as roots to find the reachable objects. The write barrier is

the collector's element which maintains this set of references. It is called by the mutator

each time a reference is stored in the heap. Nonetheless, it is also called by the collector

each time an object referenced by another object considered as a root is moved in the

heap.

The number of calls to the write barrier is quite significant. Furthermore, older

first collectors usually track many more pointers [Sldanovié: 9gb], thus, the importance

of examining the efficiency of this component. It has a major impact on overall per

formance. This realization has guided us in the conception of our older-first garbage

collector. Figure 4.5 shows the pseudocode for our write barrier.

To understand the pseudocode, one must have a good understanding of the

bounded frame marking mechanism previously presented. Remember that each win

dow maintains its own remembered set. This set allows the collector to find ail the

roots for the window being collected. For each window, we have a number of frames

equal to the number of cards in the heap. This fact is iIIustrated in Figure 4.G.

When an object field is updated, the write barrier is called. While in the write

barrier, we first verify if the value stored in the field is indeed a reference to Mother

46

_svmCwrite_barrier (heap, slot)

{

IF the abject referenced is in the heap THEN

compute the index of the frame to update

Il index_frame = ((slot - heap->start) 1heap->frame_size)

compute the index of the window to update

Il index_window = ((*slot - heap->start) 1heap->window_size)

access the frame to update

Il frame = heap->windows [index_window] . frames [index_frame]

IF slot < frame->start THEN

frame->start = slot;

END TF

IF slot > frame->end THEN

frame->end = slot;

END IF

END IF

Figure 4.5 Write Barrier Pseudocode

47

Remembered set

for the first window

x
"0" ... second window
C

... third window

... forlh window

frame's index

Figure 4.6 Remembered Sets for the Bounded Frame Marking Method

48

object in the heap. In that case, we compute the index of the bounded frame associated

with the card that contains the field being updated. Atler that, we compute the index

of the window that contains the object referenced by the field being updated. These

indexes are represented in Figure 4.6. Then, we access the remembered set to obtain

the pair of pointers that delimits this bounded frame. At that point, we update the

first and/or the last pointers if necessary. AlI these operations are executed in constant

time. So the execution time of our write barrier is very fast.

4.5 Comparison with Card Marking

Our new bounded frame marking scheme provides aIl the characteristics of the

older-first garbage collection: short and constant pause times, reduced copying costs,

less space overhead and fragmentation, and locality. But, it has some advantages and

few drawbacks over the card marking mechanism.

One of the most signicant advantages of our method is to reduce the tracing costs

of garbage collection. As pointed out by Jones and others in [Jones 96; Hosking 92]

respectively, tracing is often one of the most expensive steps of garbage collection.

Remember that with a card marking system whenever the mutator modifies an object

reference field in a card, it caUs the write barrier to mark the card as modified. At

collection time, the collector scans all the marked cards to find pointers that point into

the window being collected. These cards are unmarked only when they are collected.

So, a marked card is scanned repeatedly. Depending of the size of the card, a lot of

space is being traced uselessly hence increasing the tracing cost.

Our method is more precise when marking a cardo If only one word is modified in

a card, the corresponding frame will be bounded by this word. So, the collector will scan

only one word at collection time instead of the entire cardo This situation is presented

in Figure 4.4 (the first and last pointers contain the same address). The worst case

scenario happens when the first and last words of a card are modified and represent

some references. Then the entire card is traced. But even in such a case our technique

49

is still as efficient as card marking.

Another advantage of our mechanism is to reduce the amount of unused heap

space. With the card marking system, each marked card is scanned entirely at collection

time. In addition to increasing the tracing cost, this strategy constrains the allocator to

place an object inside the boundaries of a cardo An object cannot spread across a card

boundary since we must ensure, in order to allow the collection, that the first word of

a card is a header word (or a reference word if the bidirectional object layout is used).

Thus there is some wasted space at the end of each card of the heap.

Since tracing does not necessarily start at the beginning of a card, our method

allows to spread objects over many cards, unlike the card marking system. In fact, it

allows an object spreading over many cards to be partially traced, as shown in Figure 4.7.

Window Card D Parlially Traced Object
~--------~

Free Space
1 Il Il Il / . 1

1 '1, II . Il // 1
'00---Q----J~D-----·------'~O----O- 0"0/0-0----·

Allocaled Objects:__ ___ t L_.,:::' __ c : ~j ~ Bounded Frame

8
~ Pair Of Pointers
~
~ Firs! & La't c:: _ c:~-o~-o

:n <lJ (n Co,) Pointers

Figure 4.7 A Partially Traced Object

The collector traces only the parts of the object that potentially contain some

source pointers. But, what we want to expose here is the fact that each card is entirely

allocated. The only exception is the last card of each window, the unit of collection of

the older-first garbage collector. We cannot spread an object over a window since the

collector would corrupt the object at collection time. This limitation is not addressed

within our system. So, there is still some unused space but only at the end of each

window.

This discussion introduces the next advantage of our technique; the object size

is no longer limited by the size of a cardo As mentionned before, the traditional card

50

marking system does not allow an object to spread over many cards. Thus the size of an

object is limited by the size of a cardo Our bounded frame marking scheme eliminates

this constraint by allowing an object to coyer many cards. So, the object size and the

card size are no longer dependent. Nevertheless, the object size is still limited by the

size of a window, a constraint introduced by older-first algorithms.

These advantages come with at least two disadvantages. First, instead of using one

bit by card as the card marking mechanism does, we use two words by card representing

the frame's first and last pointers. Also, our method causes a space overhead that

increases in a quadratic manner. Suppose the number of cards is n and the number

of regions collected independently is m. In that case, the collector maintains (n * m)

frames because each region has its own remembered set which contains a frame for each

cardo

The second point concerns write barrier costs. As explained before, our technique

forces the write barrier to compare the first and last pointers with the pointer presently

being stored. The card maI'king system does not need to make these comparisons since

it only updates the bit no matter the exact address of the pointer being stored. On

the other hand, it needs to manipulate the bit vector. This implies that the needed

bit's position must be computed, this bit must be then reached, and finally updated.

Depending on the specifie processor, 3 to 6 instructions are needed to realize these

operations [Hülzle 9;3; Wilson 89a]. Thus the overhead resulting from our comparisons

is compensated by these bit manipulations.

4.6 Comparison with Remembered Set

Our new bounded frame marking method combines the card marking and remem

bered set techniques. This combination provides our system with at least one advantage

over systems implementing only the remembered set mechanism. Our method reduces

and fixes space overhead. Remember that the basic remembered set strategy uses one

word for each store into the heap that represents a pointer from a younger to an older

51

window. This means that the size of a window's remembered set can be proportional

to the number of references in the heap. If the strategy implemented does not track the

duplicated entries (i.e. many stores into the same location), the size of the remembered

set can grow significantly. However, the remembered set grows in a linear manner which

is better than our earlier-stated quadratic complexity.

In our system, instead of using one word for each significant store into the heap,

we use two bytes by cardo Thus, we provide our system with a fixed space overhead

that is potentially smaller than the one provided by the basic remembered set scheme.

On the other hand, our method is less precise when tracing. We must scan more space

to find the source references in a frame. Thus, our tracing cost is higher. Nevertheless,

this drawback is less important for our method than for the card marking scheme.

4.7 Conclusion

In this chapter we introduced a new method that uses bounded frame to reduce the

tracing costs of traditional card marking schemes. We described the bidirectional object

layout which is exploited in our scheme. We discussed the need for an efficient write

barrier mecanism, and explained how this need has guided us in the conception of our

method. Finally, we compared our bounded frame marking technique with traditional

remembered set and card marking strategies. Empirical eva1uations of our method is

given in Chapter 10.

Chapter V

DEALING WITH CYCLES, LARGE GARBAGE STRUCTURES,

AND FLOATING GARBAGE

The incremental algorithm proposes to divide the heap into fixed-sized regions

and incrementally collect each region in turn, bounding the amount of data copied at

each collection step. The problem is that sorne structures may never be collapsed into

the boundaries of a region, causing either multiple collections of the same garbage or

memory leaks. The amount of garbage structures may represent up to 80 percent of ail

dead objects with certain applications [Adjih 96].

In this chapter, we closely examine sorne garbage structures, and present how col

lectors actually handle them. Then, we present a technique which provides completeness

by marking live objects without space overhead.

5.1 Garbage Structures

Incrementai collections as depicted in Chapter 3 fail when dealing with garbage

spreading over regions not collected at the same time. Large garbage structures, cycles,

and floating garbage stand as examples, let us introduce them now.

5.1.1 Large Garbage Structures

As an example, suppose we have a single-linked list of objects which overlay many

increments. The list is placed in such a way that its taïl is first colleeted, then cornes

53

the element which precedes the tail, and so on backtraking through the list until the

collection cornes upon the head. Figure 5.1 presents the idea. In this illustration,

increments are collected from left to right. Reachable objects are copied into the empty

increment while collecting.

Free Space

Allocated übjects

D List's Elements

Collections

First...

Seventh...

Thirteenth...

Thirty-Seventh ...

Figure 5.1 A Large Garbage Structure Overlaying many Increments

One root maintains the list away from collection. As Figure 5.1 shows, freeing

the entire list may request collecting forty-three increments if only the root is nullified.

The linked-list's elements are copied several times causing a negative effect on overall

performance. The result is not a memory leak. Nonetheless, this temporary memory

shortage may lead to premature out-of-memory errors.

54

5.1.2 Cycles

Cyc!ic structures may spread over many increments, and may never be freed if

they cannot be collapsed into a single region. Look at the circularly-linked-list pictured

in Figure 5.2.

Free Space

Allocated Objects

D Lisl'S Elements

Figure 5.2 A Cyc!ic Structure Overlaying many Increments

If only the root which maintains the list away from collection is nullified, freeing

the entire Iist becomes impossible. This memory leak occurs because each element is

still reachable from the remembered set and thus can not be collected. By copying

elements over and over again, cyclic structures negatively affect overall performance.

Furthermore, this memory leak may lead to premature out-of-memory errors.

5.1.3 Floating Garbage

Garbage collectors are conservative when assuming that ail objects in the remem

bered set are alive. However, objects may die after they have been inserted into the

remembered set but before being callected. When the dead abjects in the remembered

set refer to other dead objects in the collected region, those dead abjects are copied by

the collectoI. They are called floating garbage, or simply floats [Hansen 02]. Cycles and

large garbage structures may generate a lot of floats.

5.2 Providing Completeness

Collectors often mark the object graph starting from the root set, and conserve

only marked abjects while collecting. By marking objects, collectors ensure that ail

55

garbage is detected. A mark stack is commonly used to avoid procedural recursions,

this adds extra space and time overhead while marking. In the worst case, such a

strategy may generate a space overhead proportional to the number of object references

populating the heap.

Many systems have severe heap restrictions combined with complex functional

requirements, which consume memory as a time-space trade-off. Embedded systems

stand as an example; mark stacks may result in a premature out-of-memory error with

systems severely limited in space. So, it is clearly undesirable to have garbage collectors

consume too much memory while marking.

5.3 Marking without Space Overhead

We introduce here a technique to mark objects without space overhead. Figure 5.;3

illustrates the method we used. Upon closer examination, one can see that we perform

a depth-first policy.

We can imagine a forest which contains many trees. We use the root set to find

these trees. Starting at the root, we go deeper and deeper down the first branch of the

tree until we bump into a leaf, which is an object either without a handy reference or

which is already marked. We consider marked objects as leaves to ensure the complete

ness of our algorithm which would loop over cyclic structures otherwise. When a leaf

is encountered, we go back up to recurse into the next branch, and so on until the tree

is completely marked. By processing the root set entirely, we thus mark ail reachable

objects.

Step a) in Figure 5.:) presents the starting point of our algorithm. As you can see,

we maintain two pointers while marking: a parent which first points to the root of the

tree, and a child which points to the first reference field of the object reachable from

the root. \Ve use these pointers to repair each branch we alter while traversing the tree.

56

[] '----'1-\~
a) b) c)

e parent

l!I chi Id

(3 abject's

header

1 markcd

abject

d) e)

Figure 5.3 Mark without Space Overhead

5.3.1 Depth-First Marking Trace

Now, let us describe the process in detail using the example illustrated in Fig

ure 0.3. Figure 0.4 reveals the pseudocode of our marking procedure, which receives a

root as parameter. Our algorithm first checks if the root either is null or refers to an

object already marked, in both cases we return immediately. Otherwise, the object is

marked and we set the parent and child pointers as illustrated in step a) of our example.

The remaining steps take place in the core loap of our procedure.

Our algorithm loops while there is a child to visit, or while the parent is not the

root. In our example, the root refers to an object which has potentially two children,

so we enter the loop. In the loop, we initially verify if the child pointer indirectly refers

57

IF the raot is null or the abject is marked THEN

retum

ELSE

mark the object

refer to the root using the parent pointer

refer to the first child of the abject using the child pointer

WHILE there is a child OR the parent is not the root LOOP

IF lhere is a child THEN

IF the chiId is not marked THEN

mark the child

IF the child has another child THEN

go down the lree

END IF

ENDIF

ELSE

go back up the tree

END IF

refer to the next child of the parent using the child pointer

ENDWHILE

END IF

Figure 5.4 Pseudocode for the Marking Procedure

to an object. This is the case, so we check if this object is already marked. As you can

see in step a), the object is not marked. Therefore, we mark the object, and we go on

down since this object has a child. In order to go back up later, we must remember

where we came from when we go down. Normally, it is this information that yields space

overhead. In our scheme, we use the heap space to stock this information, avoiding the

space overhead.

Figure 5.5 presents what happens when we go down. We first remember the child

pointer in a swap variable (see a.l). Next, we set the child pointer to the first reference

field of the object indirectly referenced by the child pointer itself (see a.2). Then, we

use the reference field of the abject we leave behind ta remember where we need to go

when we will go back up later (see a.3). Finally, we set the parent equal to the swap

variable. All these operations occur between steps a) and b), and as well each time we

go down into the tree.

58

~Root ~Root ~Root

QSI .~ .~

~ ~ m
a) a.l a.2

swap =child; child ='child

child_offset;

A swap

@ parent

lB child

[j object

headerm m
 1 marked

object
a.3 b)

'swap =parent; parent =swap;

Figure 5.5 Coing Down while Marking

Ali the following actions happen between steps b) and c). Starting from step b),

we use the child pointer to access the next object, which is not marked. We mark it,

but we do not go down since this object does not have a child. So, we move the child

pointer over to the next reference field. Again, we use the child pointer to access the

next object, which is also not marked. We mark it, but now we go down since this

object has potentially two children. However, the first child is null, so we skip it. We

are now at step c).

In step c), we bump into a leaf which is an object already marked. Since there

are no more children, we have to go back up. Figure 5.6 illustrates what happens when

we go back up. We first set the swap variable equal to the reference field pointed to by

the parent pointer (see c.l). Next, we set this reference field equal to the child pointer

(see c.2). Then, we set the child pointer equal to the parent (see c.3). Finally, we set

the parent equal to the swap variable, and we move the child pointer over to the next

59

consecutive reference field. Ali these operations occur between steps c) and d), and each

time we go up the tree.

IJ L...OL\~
c)	 c.l c.2

swap = *parenl; *parent =chi Id;

Il. swap

Iill parent

Iiil	 chi Id

~	 object
header

1 marked

object

c.3 d)
child =parent; parent = swap;

Figure 5.6 Coing Up while Marking

In step d), the child pointer reaches an object header. We then must go up since

no other child exists. At that point, the parent pointer refers to the root, and the child

pointer refers to a nullified refcrcncc field. Thus, we move the child pointer over to the

next word, which is also an object header. This last move brings us to step e), we then

reach the end of the marking process.

5.4 Conclusion

In this chapter we introduced garbage structures such as cycles, large structrues,

and fioats. We discussed the space overhead generated by col!ectors which use mark

60

stacks to provide completeness. We proposed a technique to mark objects and provide

completeness without space overhead. Finally, we presented a complete trace of our

method using a small example.

Chapter VI

DEALING WITH LARGE üBJECTS

Collector designers make assumptions about the lifetime of objects, and they

aspire to improve collection algorithms by tailoring them to these assumptions. In

[Inoue 06], the authors define the lifetime of an object in garbage collection studies as

the sum of the sizes of all objects allocated between the given object's allocation and

death. They express its lifetime in bytes or words.

Most garbage collectors make relatively coarse-grained predictions (e.g., short

lived versus long-lived) and rely on general heuristics to predict the lifetime of objects

[Liebennan 8:~; Han~on 90]. For instance, older-first collectors copy older objects first,

and generational collectors copy the younger generation more often than the older one.

Other systems implement more precise predictors which maJœ their predictions based

on application-specifie training rather than application-independent heuristics [[noue 03;

Inouc 06].

Accurately predicting the lifetimes of objects can effectively improve memory

management systems, but wrong assumptions may result in pOOl' performances. A

predictor is accurate when a great fraction of its predictions are correct, and it is precise

when the granularity of its predictions becomes equal to a small unit of allocation. A

fully precise predictor has a granularity of predictions equal to the smallest possible

unit of allocation. UsuaJIy, predictors must trade off between accuracy and precision,

because increasing precision often leads to less accuracy.

62

Many policies have been used to prophesize the lifetime of objects. For instance,

many copying garbage colleetors assume that large objects are long-lived. On that

account, they handle large objects specially in a separate space to reduce the costs of

managing them. Many implementations employ this strategy [Caudill 86; IIudson 91;

n.eppy 9:3], sorne of which do not collect the large objects at all, and sorne of which

collect them using diverse algorithms.

In this chapter, we describe our large object policy that regroups large objects in

memory and makes assumptions about their lifetime. Large object segregation implies

lack of promptness caused by delays in the collection of dead objects. In Section 6.2, we

present a solution to that problem. Finally, we introduce a study that provides sorne

helpful tips for managing large object spaces.

6.1 Large übject Policies

Predictors often use the characteristics of an object to predict its lifetime. Usually,

object size is a good property to consider while predicting. Many systems segregate

small and large objects into the heap, and employ distinct policies to manage them

tUngar 88; Hudson 92; Baker 92; Lirn 98]. By isolating large objects into a specifie area,

we can handle them more efficiently, and studies show that this pays off [Hicks 98].

We follow the assumption that large objects are generally long-lived, and so we

suggest COllecting them less often than smail objects. On that account, our older-first

collector allocates small objects at the beginning of the heap, and large ones at the end.

We maintain a reference pointer to the first word of the large object space. Initially,

no large objects exist, so the pointer refers to the end of the heap. When the mutator

requests a large block of memory, the pointer moves over a lower address. Figure 6.1

illustrates the heap layout we propose for our large object policy.

The large object space is always aligned with the boundary of a window, and it

may spread over one or more windows. When the mutator creates a large object, we

widen the large object space if necessary, and narrow the small object space accordingly.

63

Copy Reserve Large Objects
Small Objec,' ..,. - - - - - - - - -;>

No large :-----------:::----T-----,--::-----------::--:--------:
Objec,", DD]::D DDDDDDD
_________________--:-=-0 _

S,"~~ ~~_c':':.c __ t,ge Objects
Smail ObjeelS

Sorne large

Objem [DDmDD·~,[DDD!DJD

.----------- ---------~-- ---------- ------------

Illcrcasing Decrcasing
memory memory

addresses addresses

Figure 6.1 Heap Layout for Large abjects Policy

We always keep at least one window free as a copy reserve for our small object space.

Such a reserve is needless for the large object space, we collect it only when the mutator

exhausts the heap. In that case, we enlarge the heap and launch a full collection,

possibly extending both the small and large object spaces. During a full collection we

compact small objects at the beginning of the heap, and large objects at the end.

6.2 Improving Promptness

By copying only small objects over and over, we reduce the copying cost of the

collector. We move large objects exclusively when a full collection occurs. However, if

we take too long to reclaim large-sized garbage, we risk copying dead objects repeatedly.

Many small objects shall be preserved only because they are referred to from objects

that are undetected garbage. This lack of promptness may negatively affect overall

performance, although this does not appear to be a problem in practice tUngar 8.1].

We correct this deficiency using our mark algorithm described in Chapter 5. When

the small object space becomes full, our older-first collector marks aIl reachable objects

in the heap, just before the first minor collection occurs. Unmarked objects stay in place

during copying, and since the window is fed back to the allocator after its collection, the

unreachable memory consequently becomes freed. On the other hand, marked objects

64

are moved at collection time, and each one is unmarked after its displacement. The next

marking step is triggered only when all of the small objects have been unmarked. For

that reason, the collector must collect the small object space entirely before marking

once again.

Large objects are collected and thus unmarked only when a full collection occurs.

However, the collector may execute several marking steps before such a collection is

initiated. Since our mark algorithm treats marked objects as leaves, the large objects

may corrupt the process. We unmark all large objects before each marking step to

remedy this situation. We maintain a table of pointers to rapidly find those objects

while unmarking.

6.3 Large Object Space

A study of large object space is done in [Hicks 98]. This research provides some

guidance about the best ways to implement a large object space policy. The authors

examine the design space for copying garbage collectors in which large objects are man

aged in a separate space. They focus on how to determine the policy for classifying

objects as large, and how to manage the large object space.

They compare the performance of a treadmill collection to that of a mark-and

sweep collection for managing the large object space. Their conclusion is that for some

heaps there exists a minimum threshold below which adding objects to the large object

space does not generate better performance, while for others no such cutoff exists.

They also find that the exact method used to collect the large object space does not

significantly influence overall performance.

6.4 Conclusion

In this chapter we suggested a segregation strategy to manage large objects which

we assume to be longer lived. We proposed a way to fight lack of promptness caused

by our strategy. We also introduced a study that provides sorne guidance on how to

65

implement a large object space policy.

Chapter VII

GENERATIONAL OLDER-FIRST ALGORITHM

Generational copying garbage collectors more frequently collect the youngest ob

jects, and copy any survivors to a mature space which is collected less often. Many

empirical studies have shown that such a younger-first policy usually outperforms non

generational collectors [Ung<1r 84; Appel 8~); Hayes 91; Blackburn 02<1]. In practice,

young generations often contain a higher fraction of unreachable objects because most

programs satisfy the weak generational hypothesis, which assumes that young objects die

at a faster rate than older objects. Each collection consequently reclaims more garbage

space.

7.1 Flaating Garbage

Hansen and Clinger [Hansen 02] have measured the amount of fioating garbage

produced by their generational collectors. They found that promotion fioats are often

high, and comparable between collectors with either two or three generations. In the

worst case, their collectors attain 48.5 percent of promotion fioats, copying 278.7 Mb of

garbage. The copying cost is therefore seriously affected.

7.2 Giving Objects Time ta Die

Baker [Baker 9:~1 used a model of object lifetimes to demonstrate that younger

first collectors would surprisingly perform worse than non-generational collectors when

67

most objects die young. In his model, each object has a 50% probability of being

already dead when a collection happens. By processing objects which have not yet had

sufficient time to die, Baker shows that geIlerational strategies do not recover rnuch

storage at once. An older-first policy, which proposes to collect old objects more often

than younger ones, would recover more storage for a similar amount of effort.

Older-first collection shows promise by collecting older objects first, and then giv

ing younger ones enough time to die. Stefanovic, McKinley, and Moss use a garbage

collection simulation to point out potential improvements by using an older-first algo

rithm [Stefallovi(; 99(;; Stefanovîé' 99h], although older-first collectors colleet older objects

over and over again, which is costly.

Generational collectors do not manage the youngest objects efficiently, and older

first collectors fail to exploit the fact that older objects are generally longer-lived. We

consider next a generational older-first (GOF) collector that combines the profits of

both generational and older-first collectors to improve garbage collection.

1.3 3-GOF Collector

We propose here our 3-GOF collector which exploits the high mortality rate of

young objects, avoids collecting the youngest objects, avoids collecting previously copied

objects, and performs its collection incrementally. 3-GOF exploits the advantages of

both the generational and older-first collectors. It partitions the heap into three gen

erations, and manages them using the older-tirst algorithm presented in Chapter L1.

Figure 7.1 shows how the 3-GOF collector organizes the heap.

As shown in this illustration, each generation contains many windows. The win

dow is the unit of collection. When a window from a younger generation is collected,

the surviving objects are copied into the next generation. When the oldest generation is

collected, survivors are moved into another window in the same generation. Therefore,

the youngest generation does not maintain a copy reserve, but the older generations

hoId the survivors, and hence we reserve a window from each older generation as a copy

68

Window Card
"'* - - - - - - - - -:> "'* ~

Free Space

Nursery
Allocated abjects

- - - Window's Boundary

aider Younger
~ Collection

Copy Reserve
"'*--------->

1 II 1
1 - ~. -. -rn-- - - - - "0- ---c-- - ---0- ,II I[1

Middle-Aged
iD: il /,:
Il . Il .' 1

1..1- - - - - - - - - - _I!.... '~ ••1

Copy Reserve
~ - - - - - - - - ->

aldesl

Figure 7.1 Heap Layout for the COF Col1ector

69

reserve.

The older-first collector assumes that survivors are the youngest objects in the

heap after a collection. However, the GOF collectors consider the survivors as the

youngest objects in the generation which contains them.

7.3.1 Tracking Root Pointers

As discussed in Chapter 2, generational and older-first copying collectors trace

roots to find reachable objects at collection time. In Chapter 4, we proposed a new

method which combined card marking and a remembered set to track root pointers in

our older-first collector. We employ the same technique in our GOF collector.

The GOF collector divides the heap into three generations; each of them contains

many windows. It collects one window at time, so it must maintain a remembered set for

each window in the heap, as the older-first collector does. Remember that a remembered

set contains many pairs of pointers, one pair for each logical card partitioning the heap.

A pair of pointers delimits a frame of memory which is bounded by the corresponding

cardo While collecting a window, GOF assumes that ail frames may contain some root

pointers, and thus it traces them to find live objects.

7.3.2 Handling Large Objects

In Chapter G, we presented our policy to handle large objects in the older-first

collector. This policy aims to reduce the copying costs of our collector. We isolate large

objects to collect them less often than small objects; we assume that large objects are

usually longer-lived. We employ the same policy to manage large objects in our GOF

collector. However, only the oldest generation maintains a large object space, as shown

in Figure 7.1.

70

7.3.3 Marking Garbage Structures

We described in Chapter 5 a new technique to mark reachable objects in a depth

first order without space overhead. We use a marking step to reclaim cycles and large

garbage structures as soon as possible, and thus improve the promptness of our older

first collectoI. We employ the same technique to manage garbage structures in our GOF

collector.

By marking objects before collecting them, we never copy the floating garbage pro

duced by the collectoI. We only move marked objects during a collection, so unmarked

dead objects are promptly fed back to the allocatoI. Hence, we improve promptness by

reducing the copying costs of the collector.

7.4 Conclusion

In this chapter we discussed the impacts of floating garbage and long-lived objects

on the performance of traditional collectors. We presented a basic implementation of a

generational older-first algorithm, which exploits the high mortality rate of young ob

jects, avoids collecting the youngest objects, avoids collecting previously copied objects,

and performs collections incrementally. We explained how the collector handles large

objects and recycles garbage structures.

Chapter VIII

DEPTH-FIRST SEMI-SPACE ALGORITHM

Copying garbage collectors implement either a breadth-first or a depth-first col

lection. The Cheney copying algorithm [Cheney 70] is breadth-first. It is traditiona.lly

used because it does not require any extra temporary storage such as a stack. Algo

rithms that use a stack risk not being able to allocate sufficient rnemory to hold this

stack. The required stack depth cannot be reliably predicted in advance sinee it depends

on the user data structure.

As a drawback, breadth-first collection may suffer from poorel' locality than a

depth-first collection. It tends to group unrelated objects in memory (e.g., cousins,

rather than parents and children). This is especially true when the breadth of the

tree is large, for instance, when the root from which the garbage collector starts trac

ing is a large array of objects. It has been shown that such a lacl< of locality may

lead to substantial performance degradation. For this reason, copying algorithms of

ten cluster related objects together in depth-first order, thus improving object locality

[Sdù<olnick 77; Stamos 84; vVilson 91].

In this chapter, we first describe our depth-first copying algorithm, which does not

create space overhead. We then present sorne techniques which try to improve locality,

and finallY talk about sorne points of comparison for these algorithms.

72

8.1 Depth-First Copying without Space Overhead

Copy-stacks are often used ta avoid procedural recursion that create extra space

and time overhead while depth-first copying. Nonetheless, such a strategy may generate

a space overhead proportional to the number of live objects populating the heap. In

systems severely limited in space, this strategy may be unreliable because it consumes

too much memory. Consequently, collector designers often use a breadth-first algorithm

which does not require any temporary storage. They trade the space overhead to a lack

of locality, which causes a loss of performance.

We introduce here a new technique to copy objects in a depth-first manner without

creating space overhead. Figure 8.1 illustrates the method we used. As one can see,

we perform the same depth-first algorithm we use for marking objects (see Chapter 5).

Instead of marking the objects, we copy them. By processing the root set entirely, we

thus copy ail reachable objects.

8.1.1 Depth-First Copying Trace

Now, let us describe the pracess in detai1. Step a) in Figure 8.1 presents the

starting point of our algorithm. Figure 8.2 reveals the pseudocode of our depth-first

copying procedure, which receives a root as a parameter. In our procedure, we first

check if the root is either null or refers to an object already copied, in both cases

we return immediately. An object is already copied if its header contains a forward

reference, which is the address of the object's copy, as the Cheney algorithm proposes

(see Chapter 2). If the object has not yet been copied, we copy it and put the forward

reference in its header. Then, we set the parent and child pointers as illustrated in step

a) of our example. In Figure 8.1, objects with a plain header belong in the copy reserve,

and objects with a striped header still belong in the old semi-space. The remaining

steps take place in the core loop of our procedure.

Our algorithm loops while either there is a child to visit or the parent is not the

73

a) b) c)

d) e)

(9 parent

Il! child

(j object's _ Old Semi-Space

header

o copied - Copy Reserve
object

Depth-FirSI

DSGJ~~
Breadth-Firsl

Figure 8.1 Depth-First Copying without Space Overhead

root. In our example, the root refers to an object which has potentially two children,

so we enter the loop. In the loop, we first verify if the child pointer indirectly refers to

an object. This is the case, so we check if this object has already been copied. As one

can see in step a), the object has not yet been copied. Therefore, we copy the object,

and we continue to go down since this object has a child. We are now at step b). In a

breadth-first algorithm, we should move over the next adjacent child instead of going

down the tree.

Ali the following actions occur between steps b) and c). Starting from step b),

we use the child pointer to access the next object, which has not been copied. We copy

it, but we do not continue on down since this object does not have a child. So, we move

74

IF the root is nul1 or the object has been copied THEN

return

ELSE

copy the object

refer to the root using the parent pointer

refer to the first child of the object using the child pointer

WHILE there is a child OR the parent is notthe root LOOP

IF there is a child THEN

IF the child has not been copied THEN

copy the child

IF the child has another child THEN

go down the tree

END IF

END IF

ELSE

go back up the tree

END IF

refer to the next child of the parent using the child pointer

ENDWHILE

END IF

Figure 8.2 Pseudocode for the Copying Procedure

the child pointer over to the next reference field. Again, we use the child pointer to

access the next object, which also has not been copied. We then copy it, but now we do

go down since the object has potentially two children. However, the first child is null,

so we skip it. We are now at step c).

In step c), we bump into a leaf which is an object that has already been copied.

Since there are no other children, we have to go back up. In step d), the child pointer

reaches an object header. We then go back up since no other child exists. At that point,

the parent pointer refers to the root, and the child pointer indirectly refers to an object.

Thus, we copy that object, and we continue on down since this object has potentially

two children. These childen are both nul!. Thus, we go back up and move the child

pointer over to the next word, which is an object header. This last move brings us to

step e), we then reach the end of the copying process.

75

8.2 Points of Comparison

At the bottom of Figure 8.1, we present the outcome of both the depth-first and

breadth-first algorithms. One can see that the breadth-first algorithm places children

away from their parents in memory, while the depth-first algorithm puts them next to

each other. Studies have shown that some mutators tend to access objects which have

references to each other closely in time [1\'10011 84; Huang 04], so the parent-child locality

provided by a depth-first traversaI may incur better performances.

Depth-first copy-stacks actually create a space overhead which may interrupt the

mutator prematurely. Collector designers employ breadth-first algorithms specifically

to avoid such a failure. We now propose a new method which does not require any

temporary storage, avoiding the traditional space overhead. Our algorithm uses one

word from each object visited to encode the copy-stack, and two pointers to remember

the parent and the child currently treated.

8.3 Improving Locality

A mutator may exhibit predictable properties such as accessing objects in tum

which were allocated in turn, or have references to each other. We can use this ob

servation to improve overall performance. The locality of reference is a property often

exploited in garbage collection system to give better performances.

In [H.uang 04], the authors show that static copying orders result in wide variations

in performance, which they consider a pathology. They propose a dynamic analysis that

detects mutator traversaI patterns and exploits them in a copying col1ector.

8.4 Conclusion

In this chapter, we described our depth-first copying algorithm. We further pre

sented some works which try to improve locality. Finally, we discussed some points of

comparison for the depth-first copying collector.

Chapter IX

IMPLEMENTATION

9.1 SableVM: A Virtual Machine for Executing Java Bytecode

Ali of our new techniques have been implemented on SableVM, a virtual ma

chine for executing Java bytecode [Cagnon (nb; Gagnon 02a; Cagnon O;~a]. SableVM is

intended as a research framework for efficient execution of Java bytecode. This frame

work is essentially composed of five main components: interpreter, verifier, class loader,

native interface, and memory manager.

This experimental framework publicly available is written in the C program

ming language. It has been designed to be a robust, extremely portable, efficient,

and specification-compliant Java virtua! machine. Its source code is easy to maintain

and extend. This makes SableVM an ideal framework for testing new high-level impIe

mentation features or bytecode language extensions.

9.2 Memory Management Framework

Memory management is a critical issue for an increasing number of applications.

There is no one correct way to configure heaps, collectors, and allocators. The best

choice depends on how the application uses memory as weil as on the user requirements,

and so JVM's default garbage collection choices may not be optimal. In this section, we

present a memory management framework that can be customized to specifie application

needs.

77

We have integrated a flexible memory manager in SableVM. It has been designed

to provide a great level of reusability, modularity, portability, and performance, and

enables to test a variaty of aliocators, collectors, and write barrier mechanisms. The

framework is easy to extend and provides a clean and meaningful experimental plat

form. It is implemented in C without any special support added to the language or the

compiler.

9.3 Available Collectors

Currently, the framework provides five garbage coliectors (breadth-first semi

space, depth-first semi-space, generational, older-first, and generational older-first), but

only one contiguous aliocator. Ali the collectors interact with this allocator. Nonethe

less, the framework offers a platform to implement new collectors and allocators.

Our collectors share ail the common mechanisms, policies, and functionalities,

such as root processing, copying, tracing, allocation, and collection mechanisms, and use

the exact same implementation, allowing to obtain very accurate experimental results.

The breadth-first semi-space collector implements Cheney's algorithm [Cheney 7U], and

the depth-first collector implements the algorithm presented in Chapter 8. The gener

ational collectors work with three generations of fixed and possibly distinct sizes. One

implements the basic algorithm described in Chapter 2, the other puts into practice the

generational older-first algorithm proposed in Chapter 7.

9.3.1 Older-First

The older-first collector implements the basic scheme presented in Section 3.1. By

default, the collector maintains the root set using the bounded frame marking mech

anism described in Chapter 4. It also provides completeness by marking objects as

explained in Chapter 5. Finally, it assumes that large objects are longer-lived, and

consequently puts into practice the large object space approach explained in Chapter G.

78

RC MS MC SS GC lC OF
Pause Time v g b b v v v
Throughput v g b g g v v
Promptness e v v v b g v
Completeness - + + + - - +
Space Overhead g v g b b v v
Unused Space b b e e v g v
Fragmentation b b e e g v v
Locality b b v v g g g

Meaning

(b)ad, (g)ood, (v)ery good, (e)xce\lent

(-) not provided, (+) proviùeù

Table 9.1 Points of Comparison for the Older-First Mix Collector

Points of Comparison

Table 9.1 surveys the impacts of our older-first collector using the points of com

parison. We further examine what this table demonstrates.

Our older-first mix collector reduces the average pause time because it collects

the heap incrementally. By doing so, it improves both the responsiveness and the

throughput of the mutator.

We fight fragmentation by creating the heap in one chunk of memory. We also

create the structures employed to manage the heap within that chunk of memory. We

thereby hope to improve overall performance by reducing fragmentation.

Vve reduce and control the space overhead of the older-first mix collectaI. By

collecting only one window at a time, we reduce the copy reserve needed to hold the

survivors of a collection. By combining the card marking and remembered set tech

niques, we control the space overhead needed to remember the root pointers. We also

reduce unused space by allowing objects to spread over many cards. However, objects

cannot span across many windows, and so there is sorne unused space left at the end of

each window.

79

The older-first mix collector provides some locatity by keeping close together in

memory objects that were allocated one after the other. The overall performance should

be improved by mutators accessing closely in time objects which were allocated together.

However, the large object space degrades this locality by holding large objects away from

the other objects they refer to.

The bounded frames allow the collector to trace objects even partially. It thus

traces less space than collectors which use card marking. However, it still traces more

space than collectors which use remembered sets.

By marking objects before collecting them, the older-first mix collector can reclaim

all garbage. Using this technique, it further improves promptness by rec\aiming garbage

as well as cyclic and large structures promptly.

Finally, the older-first algorithm causes older objects to be repeatedly collected.

Studies show that in practice the mortality rate is higher for younger than older objects

[Hayes 91; Baker 93; Hayes 93; Sl,cfanovi{: 94]. So, we should collect older objects less

often to reduce copying costs, We now present a solution that is the generational older

first collector.

9.3.2 Generational Older-First Collector

The generational older-first collector is implemented as explained in Chapter 7,

By default, it uses the bounded frame marking mechanism (Chapter 4), provides com

pleteness (Chapter 5), and maintains a large object space (Chapter 6) as the older-first

collector does. In fact, our generational version has been implemented using very few

lines of code (approximately 200 lines), since it shares its core with the older-first col

lector.

80

RC MS MC SS GC lC OF GO
Pause Time v g b b v v v v
Throughput v g b g g v v v
Promptness e v v v b g v v
Completeness - + + + - - + +
Space Overhead g v g b b v v v
Unused Space b b e e v g v g
Fragmentation b b e e g v v v
Locality b b v v g g g g

Meaning

(b)ad, (g)ood, (v)ery good, (e)xcellent

(-) not provided, (+) provided

Table 9.2 Points of Comparison for the Generational Older-First Collector

Points of Comparison

Table 9.2 presents the effects of our generational older-first collector using the

points of comparison. Let us describe what this table demonstrates.

The generational older-first collector provides the same advantages as the older

first mix. It reduces the average pause time because it collects the heap incrementally,

and consequently improves both the responsiveness and the throughput of the mutator.

It also provides completeness by marking objects before collecting them.

The generational older-first collector further improves promptness by reclaiming

garbage as weil as cyclic and large structures promptly. It also reduces copying costs by

holding a large object space, and minimizes fragmentation by creating and managing the

heap within one block of memory. It reduces space overhead, minimizes the amount of

unused space, and fixes the size of the remembered set. Finally, it conserves the locality

of objects allocated closely in time. But, the generational older-first collector does not

mix survivors with newly allocated objects. We therefore believe that the generational

older-first collector should preserve a better locality than the older-first mix.

The generational older-first collector has an advantage over the older-first mix:

81

it does not copy both older and younger objects at the same rate. It copies younger

objects more often than older objects which are generally longer-lived. Although, one

should remember that it does not collect the youngest objects. By doing so, we hope to

reduce the copying costs of the collector.

9.4 Marking Policy

The older-first and the generational older-first collectors mark objects only when

every live object is unmarked. Thus, if the objects have already been marked, the whole

heap is incrementally collected before the marking step is repeated. Consequently, we

reduce the copying costs by moving only the objects marked as live, and minimize the

marking costs by collecting ail of the heap before a marking step occurs.

There is a problem, however. The marking traversal passes through both small

and large objects, but small objects are collected repeatedly while large objects are not.

This means that some objects may still be marked when a marking step is launched,

thus corrupting the procedure. As a solution, we propose to maintain a table of pointers

which reference large objects into the large object space. When a large object is alla

cated, the allocator adds the object's address to the table. The table is then traversed

and updated as a remembered set while we unmark large objects.

9.5 Full Collection Policy

When the whole usable heap memory is exhausted, and collections do not succeed

in freeing sufficient garbage memory, the memory manager launches a full collection

and widens the heap. For the semi-space and older-first collectors, this strategy is

staightforward. Survivors are compacted at the beginning of the heap, and may spread

over many windows for the older-first collector, which ensures that no object crosses the

windows boundaries.

The generational collectors copy objects to the older generations as they usually

do, but they compact them at the beginning of each generation. Objects in the oldest

82

generation stay in that generation, but they are also compacted. After a full collection,

ail of the nursery is available for allocation. Objects in the large object space are also

compacted at the end of the heap. Only the oldest generation is enlarged when a full

collection occurs, so the large object space can also take up more space.

9.6 InternaI Write Barrier

The memory manager provides a public (or external) write barrier procedure

which remembers ail pointer stores, and mutators cali this procedure every time they

store a reference into an object field. Collectors may use this write barrier as weil to

update remembered sets while moving objects, but they sometimes don't. Our gener

ational and older-first collectors work with a more efficient private (or internaI) write

barrier.

Collectors trace frames sequentially, starting at the lowest address of the first

frame. When they begin tracing a frame, they assume that the frame contains no

addresses of survivors. On that account, they store the lowest and highest memory

addresses into two temporary pointers, which shall indicate how to skip this frame

during the next collection. However, sorne objects may still survive.

When survivors are encountered, collectors copy them. When collectors copy the

first survivor, the address of the object field that refers to the survivor is stored into both

temporary pointers, therefore indicating that the frame now contains a survivor. If the

object is not the first survivor, the address is stored only in the temporary pointer which

indicates the end of the current frame. The actions performed after copying a survivor

represent our internai write barrier. This internai write barrier is clearly an improvement

over the external one, which executes much more instructions (see Figure 4.5).

9.7 Fragmentation Policy

The memory manager minimizes fragmentation. It reserves a large chunk of

memory, and places the heap and the structures used to manage it consecutively into

83

that reserved chunk. The heap is placed at the lowest address, remembered sets appear

next, including the table of pointers employed when unmarking large objects. The size

of the table is determined by computing the maximum number of large objects which

the large object space can hold, and multiplying this number by the pointer size.

9.8 Command Line Options

SableVM enables users to override the default garbage collection setup by provid

ing command line options at compile-time. Users can thus select and tune the collector

and the write barrier mechanism they wish to employ. The memory manager actually

provides two methods to compute the root set, the card marking approach using a word

vector, and our novel bounded frame marking scheme. Users can also customize the

heap, and decide whether or not they want to compute memory management statistics.

9.9 Conclusion

In this Chapter, we described collectors that we have implemented on our memory

manager framework. We further presented points of comparison for these collectors.

Finally, we explained the policies and highlighted related constructs which our collectors

employ.

Chapter X

EXPERIMENTAL RESULTS

Our experiments provide comparison points between all the algorithms presented

so far. In this chapter, we present the platform we used to realize our experiments,

and the benchmarks employed to conduct them. Then, we describe our experimental

setting and show our results, which were obtained using diverse implementations of semi

space and older-first algorithms. More importantly, we discuss our results to reveal the

inherent space-time trade-offs of collector algorithms.

10.1 The Test Platform

Hardware - We used two processor architectures to conduct our experiments

(AMD and Pentium 4). We first performed ail our experiments on a 1.86GHz Pent.ium

II based system, with 2 Gb of RAM, 2 Mb of cache memory, and a 7,200 RPM hard

disk. Then, we performed them on a 0.8GHz AMD Duron based system, with 512 Mb

of RAM, 512 Kb of cache memory, and a 7,200 RPM hard disk.

SableVM - We ran our benchmarks using a modified version of SableVM 1.13,

which integrates the memory manager framework described in Chapter 9. We provided

SableVM with a variety of configuration parameters, which allowed us to tune collector

algorithms, control write barrier mechanisms, vary heap sizes, and measure our results.

We executed all our experiments using SableVM with gcc version 3.3.6, the real life

brokenness features enabled, and with the direct-threaded interpreter.

85

Software and Operating System - AIl execution time measurements are

based on system + user times returned by the GND time commando We obtained times

by executing sorne benchmarks on a machine running Debian GND/Linux 3.1 (a.k.a.

sarge) with kernel version 2.6.8. AlI daemon processes were turned off during these

tests.

10.2 Benchmark programs

We have performed our experiments on a Pentium IV based workstation, running

SPECjvm98 benchmarks and two object-oriented applications: Soot version 1.2.3 17

and SabieCC version 2.17.3 18 .

We present here sorne properties of the benchmarks used to get our exprimental

results.

SPECjvm98 - This benchmark suite [Corporation D8] is intended to measure

the performance of Java clients, or the speed of execution by the Java Virtual Machine

of Java byte codes. This suite requires basic byte code execution, graphies, networking,

and 1/0, but SPEC implies that former functions will normally dominate benchmark

performance.

Soot - Soot is a Java optimization framework [Group DG]. It provides interme

diate representations for analyzing and transforming Java bytecode, and can be used

as a stand-alone tool to optimize or inspect class files. Soot is a free software licensed

under the GND Lesser General Public License.

Soot uses multiple structures and creates many objects to analyze, inspect, trans

form, and optimize class files. Its high allocation rate is a great behavior to exploit

when configuring the memory manager. In our experimental study, we used Soot with

javac 1.3 as its input. This software provides a lot of class files thus producing a higher

allocation rate.

SableCC - SabieCC is a Java compiler generator [Gagnon 02h]. It is an object

86

oriented framework that generates compilers (and also interpreters) in the Java pro

gramming language. It consists of a deterministic fini te automaton (DFA) based lexer

generator, an LALR(l) parser, an abstract syntax tree (AST) builder generator, and

an object-oriented AST framework generator. SableCC is a free software licensed under

the GNU Lesser General Public License.

SableCC, just like Soot, uses multiple structures and creates many objects to

generate a compiler front-end for a compiled grammar. Its high allocation rate is also

a great characteristic to exploit when configuring the memory manager. In our experi

mental study, we used SableCC to compute a compiler for the Java 1.4 language. Since

it is described using severallexical definitions and grammar productions, this grammar

leads to a higher allocation rate.

10.3 Overall Measurements

We realized a variety of measurements to expose the space-time trade-offs of

our collectors. Using many benchmarks, we computed times by taking the average of

five runs on SableVM. For fair comparisons, each experiment fixed the heap size, and

triggered a collection when the program exhausted all the usable memory.

When evaluating a garbage collection system, we can measure the time spent exe

cuting distinct parts of the system. These times provide another method of comparison

between systems. Table 10.1 presents times that are considered during our experiments.

The pause time includes copying, tracing, and marking time. It excludes the

allocation and write barrier time, which are part of the mutation time. The mutator

spends the write barrier time to concurrently compute a subset of the root set used by

the collector to find reachable objects.

87

Time ~ Meaning Formula

Tracing time spent by the collector to
trace objects

Marking time spent by the collector to
mark objects

Copying time spent by the collector to
copy objects

Pause time spent by the collector to Tracing + Marking + Copying
collect objects

Barrier time spent by the mutator ei
ther to maintain root set or to
update reference counts

Allocation time spent by the mutator to
allocate objects

System time spent by the system to Total - Application
execute the system's code

Total time spent by the system to Application + System
execute the program

Application time spent by the system to Total - System
execute the application's code

Mutation time spent by the mutator to Application - Pause
mutate objects

Table 10.1 Times to Consider when Evaluating Garbage Collection Systems

88

10.4 Performance Measurements

We performed execution time measurernents with SableVM to measure the effi

ciency of garbage collecting using our techniques.

Overall Performance Using a Large Heap

In a first set of experiments, we measured the relative performances of the breadh

first semi-space (BSS), depth-first semi-space (DSS), older-first (OF), and older-first

large object space (OFL) copying collectors. In order to perform these experiments,

four separate versions of SableVM were compiled with identical configuration options

(heap size: 250MB, generation size: 75MB (younger) - 75MB - 100MB (older), window

size: 25MB, card size: 32KB, large object size: lOOKB, large object space size: 50MB).

For each collector, the total execution time is reported in Table 10.2. The second is the

unit of time used to present our results. Values between parentheses are used to express

the length of the collectors' execution timesin comparison with both BSS's and OF's

execution times.

The six columns of Table 10.2 contain respectively: (a) the name of the executed

benchmark, (b) the execution time in seconds using the breadth-first semi-space copying

collector, (c) the execution time in seconds using the depth-first semi-space copying

collector, (d) the execution time in seconds using the older-first copying collector, (e)

the execution time in seconds using the older-first copying collector with a large object

space, and (f) the execution time in seconds using the generational older-first copying

collector. As both platforms generate comparable results, we report only those obtained

using the AMD machine.

The Depth-First Order Provides Improvements

The overall time variation between the depth-first and the breadth-first copying

orders is only 2%, there is no consistent winner. Traversing the objects in a depth-first

89

benchmark BSS DSS OF OFL GOF
cornpress 376.09 376.51 375.41 367.56 365.43

(0.97) (0.97)
db 148.60 147.68 152.71 152.83 153.21

(0.97) (0.99) (0.96)
jack 47.40 47.14 49.42 48.42 49.57

(0.96) (1.00) (0.96) (1.02) (0.98)
javac 113.40 112.71 123.81 119.20 117.23

(0.92) (0.99) (0.91) (1.05) (0.96)
jess 84.09 84.19 96.78 92.41 85.45

(0.92) (1.00) (0.87) (LlO) (0.95)
rnpegaudio 303.84 303.63 304.59 305.00 306.34

rntrt 102.20 101.90 102.30 103.49 102.01

raytrace 99.31 99.23 99.80 100.70 101.21

sablecc 45.33 45.21 47.38 47.38 47.23
(0.96) (1.00) (0.96)

soot 823.52 807.54 1896.16 909.97
(0.43) (0.98) (0.42) (LlO) (0.47)

Table 10.2 GC Performance Measurements Using a Large Heap (AMD)

arder improves overall performance or provides one similar to a breadth-first order for

all the benchmarks.

The Large Object Space Provides Improvements

The older-first collector which segregates the large objects (OFL) provides perfor

mance improvements over the basic older-first collector. The large object space improves

total execution time by up ta 53% for the Boot benchmark, and on average by 2% ta

5%, for the heap sizes we have tested. Even more, segregating large objects enables the

older-first collector to achieve better performances than the semi-space collectors, the

improvement is up to 3% for the Compress benchmark.

The Older-First Collector Produces Pathological Cases

The older-first collector provides suitable performances on average, but does not

engender significant improvements on the benchmarks we have tested. The older-first

90

algorithm collects the same objects repeatedly, including floating garbage. Sometimes,

clustering many garbage collections might prevent mutator progress over a longer period

of time. For the Boot benchmark, we found five clusterings of garbage collections,

resulting in a 57% performance overhead over the breadth-first semi-space collector. On

the Pentium machine, this variation is as much as 17% on the overall performance. It is

quite possible that the data cache characteristics of certain machines have sorne effects

on overall performance.

The Older-First Collector Uses Memory Efficiently

One should remember that older-first garbage collectors need to reserve less mem

ory space than semi-space collectors to maintain survivors and thus reduce space over

head. Results, on the mtrt and raytrace benchmarks, show that no garbage collections

occur using the older-first algorithm. Only one collection occurs, for each benchmark,

using the semi-space collectors.

The Write-Barrier Performance Overhead

Now we examine the pointer-maintenance costs. When using a heap size of 250

MB, no garbage collections occur on both the db and sablecc benchmarks. The total

execution time includes both mutator and write-barrier times, the latter equals 0 for

semi-space collectors. Recall that our collectors share all common mechanisms, policies,

and functionalities, such as root processing, copying, tracing, allocation, and collection

mechanisms, and use the exact same implementation. Thus, the performance overhead

of the write-barrier explains the 4% variation in execution time between the older-first

and the semi-space collectors.

With the db benchmark, 34.52 million write barriers (see code in Figure 4.5) were

executed. The number of interesting pointers, which must be remembered, was 34.5

million for the older-first collector. With the sablecc benchmark, 16.03 million write

barriers were executed. The number of interesting pointers was 15.76 million for the

91

older-first collector. This engenders a significant time overhead. However, benefits of

reduced copying costs generate performance improvements.

The Generational ülder-First Col1eetor Reduces Copying Costs

The generational older-first algorithm does not col1ects the older objects repeat

edly. Benefits of reduced copying costs generate performance improvements. For the

compress and javac benchmarks, we found that the generational older-first collector

engenders performance improvements over the older-first collector. However, the gen

erational mechanism produces a time overhead that has sorne effects on overall perfor

mance. Therefore, the generational older-first collector provides suitable performances

on average, but does not engender significant improvements on the benchmarks we have

tested.

Impact of the Card Size on Performances

120 365 .c

110 Wir'ldow
Il

355 Window 1

<Il
u
c
0
u
<J)
<Il

c
<J)

E

100

90

80
70

60

50

40

size

Il 5 MB

t 20 MB

" 25 t~B

.,.,.t
,/ v

<Il
u
c
Q
u
<J)
<Il

c
<J)

E

345

335

325

315

305

295

size
Il 5 MB

t 20 ~'B

" 25 MB

,.
.'

/ ...
u
~

30

20

la
.~~-:.

./,//'
~_ .. --,'

.:: - --'f/

co
0
1

285

275

265 - .-··c

" // v
d/
~/

a 255

4 Kb 8 Kb 32 Kb 25 Mb 4 Kb 8 Kb 32 Kb 25 Mb

Card size Card size

Figure 10.1 Impact of the Card Size on Performance of the Older-First Collector

Figure HU compares both GC time and total time for the older-first collector

running on Soot. On the left performance graph, the left y-axis is the GC time. On

92

Card Size (KB) Data Traced (MB)
4 924
8 998
32 1227

2560 2532

Table 10.3 Average Amount of Megabytes Traced by the Older-First Collector

the right performance graph, the left y-axis is the total time. The bottom x-axis of

each graph is the card size, and the values used for the plots are the window sizes. As

both platforms engender comparable results, we report only those obtained using the

Pentium machine.

These results show that smaIl card sizes do indeed obtain performance improve

ments over large card sizes. Garbage collecting, using a large card size of 2.5 MB,

produces a garbage collection time (115.37 seconds) that is up to 6.6 times higher than

the garbage collection time (17.49 seconds) resulting from using a card size of 4 KB,

for a fixed heap size (250 MB) and a fixed window size. When using a card size of 2.5

MB, the total time is 364 seconds. This performance is 1.38 times higher than the best

performance (264 seconds) obtained using a card size of 4 KB.

A large card size degrades performance mainly by increasing the amount of data

traced during a collection, as shown in Table 10.~~. Garbage collection time is signifi

cantly affected by the card size with our tested benchmarks. Recall that total execution

time includes the time spent in garbage collection, mutator time, and write-barrier time.

For the execution time, the relative difference is not as pronounced as the garbage collec

tion time alone. This dilution of differences is to be expected, because garbage collection

time is considerably less than the mutator time, especially with larger heaps.

Impact of the Window Size on Performances

Figure 10.2 compares both Ge time and total time for the older-first collector

running on Soot. On the left performance graph, the left y-axis is the GC time. On the

93

365
112 Card sile

355 Card size

102 c 4 Kb 345 c 4 Kb

(Il

-0
C
o
u
(l)
(Il

92

82

72

.8 Kb

v 32 Kb

l> 2.5 ~lb

Ifl
"D
c
0
u
QI
Vl

C

335

325

315

.8 Kb

v 32 Kb

l>2.5Mb

c 62 Q.l 305

52 E
.j...J

295

42 ru 285

32
.j...J

0
1 275

22 -~ v v
'-.- ... ~--....'

12 +-------"Jf;..:;.;::;:====='r'

5MB 20MB 25 MB

Windowsize

v
265

255

5 filB 20 filB

Window size

Figure 10.2 Impact of the Window Size on Performances of the Older-First Collector

right performance graph, the left y-axis is the total time. The bottom x-axis of each

graph is the window size, and the values used for the plots are the card sizes. We report

only results obtained using the Pentium machine.

These results show that large window sizes do obtain performance improvements

over small window sizes. Garbage collecting, using a small window size of 5 MB, pro

duces a garbage collection time (115.37 seconds) that is up to 2.68 times higher than the

garbage collection time (42.97 seconds) resulting from using a window size of 25 MB,

for a fixed heap size (250 MB) and a fixed card size (2.5 MB). When using a window

size of 5 MB, the total time is 364.54 seconds. This performance is 1.26 times higher

than the best performance (289.63 seconds) attained using a window size of 25 MB.

Garbage collection time is significantly affected by the window size with our tested

benchmarks. In absolu te value, the difference in garbage collection times is much bigger

than the difference in execution times. A small window size degrades performance

mainly by increasing both the amount of data copied during a collection and the total

number of collections, as shawn in Table 10.4.

94

Window Data Object Average Object Collection
Size (MB) Copied (MB) Copied Size (KB) Count

5 1028 30958 36.38 682
20 931 189009 5.05 166
25 993 230953 4.4 136

Table 10.4 Average Amount of Megabytes Copied by the Older-First Collector

Impact of the Window Size on Copying Costs

In the presence of smail windows, the amount of floating garbage appears ta be

significantly higher, hence increasing copying costs. Also, the objects copied seem to

be significantly larger. When the window size is small (5 MB), the average size of the

abjects copied is 36.38 KB, which is up to 8.27 times the average size (4.4 KB) of the

objects copied when a larger window size (25 MB) is used. Many studies [Caudill 86;

Ungar 92; Hicks 97; Hicb 98] have already shown that large objects generally have

longer lives. Our results confirm this realization.

Copying costs do not explain ail of the performances obtained. The older-first

collector makes many more collections when the window size is small, hence decreasing

overall performance. Although a larger number of collections may be good for reducing

pause times, it increases the execution time, since stacks must be scanned more often and

garbage collection startup overhead occurs more frequently. Furthermore, object locality

may be better when using a large window size, producing performance improvements

over small window sizes.

Responsiveness of the ûlder-First Collector

Simple measures, such as the length of the longest garbage collection pause or a

distribution of pause times, do not take into account clustering of garbage collections,

which might prevent mutator progress over a longer period of time [Blackburn 02a].

However, Table 10.5 presents results obtained when executing Soot using a heap size

of 280 MB, which does not generate clustering of garbage collections. We report only

95

GC Total GC Coll. Relative Relative Relative
Aigo. Time (sec.) Time (sec.) Count Av. Pause Min Pause Max Pause
DSS 253 12 39 2.65 2512 1.58
BSS 256 15 39 3.26 35.99 2.01
OF 260 16 136 1 8.05 1

OFL 264 114 681 1.4 1 2.08

Table 10.5 Responsiveness of Collectors

results obtained using the Pentium machine.

The seven columns of Table 10.5 contain respectively: (a) the name of the algo

rithm used, (b) the execution time in seconds, (c) the garbage collection time in seconds,

(d) the number of collections, (e) the average pause time of the collector relative to the

best average pause time, (f) the minimum pause time of the collector relative to the

best minimum pause time, and (g) the maximum pause time of the collector relative to

the best maximum pause time.

Ali these collectors provide comparable overall performances. Older-first collec

tors offer better responsiveness and throughput than the other configurations. Since

the increment size of both the large object space and the semi-space collector is larger,

both the average and maximum pause times are longer. Semi-space collectors produce

an average pause time that is up to 3.26 times higher than the average pause time of

older-first collectors.

Overall Performance Using a Small Heap

In this set of experiments, we measured the relative performances of the breadth

first semi-space (BSS), depth-first semi-space (DSS), older-first (OF), and older-first

large object space (0FL) copying collectors. To perform these experiments, four sepa

rate versions of SableVM were compiled with identical configuration options (heap size:

40MB, window size: 5MB, card size: 32KB, large object size: 5KB, large object space

size: 10MB). Our results are shown in Table 10.6.

96

benchmark BSS DSS OF OFL
cornpress 98.66 102.32 96.80 94.72

db 44.76 40.86 46.16 44.69
jack 20.29 20.16 20.38 20.36
javac 37.90 37.62 38.48 38.52
jess 25.47 25.64 26.85 26.56

rnpegaudio 90.15 90.63 87.81 87.79
rntrt 33.37 33.41 32.20 32.13

raytrace 3216 32.09 31.04 31.02
sablecc 13.80 13.72 14.61 14.37

Table 10.6 Ge Performance Measurements Using a Small Heap (Pentium)

The five columns of Table 10.6 contain respectively: (a) the name of the executed

benchmark, (b) the execution time in seconds using the breadth-first semi-space copying

collector, (c) the execution time in seconds using the depth-first semi-space copying

collector, (d) the execution time in seconds using the older-first copying collector, and

(e) the execution time in seconds using the older-first copying collector with a large

object space. We report only the results obtained using the Pentium machine. In the

presence of a small heap size, the overall time variation between the semi-space and

older-first collectors is up to 3%. The older-first collector algorithm was the consistent

winner.

10.5 Discussion

We believe that better implementations of the generational older-first and the

older-first collection algorithms are possible. It is clear that sorne configurations of

these collectors offer better responsiveness than others. We have not yet explored the

configuration space fully. For example, the program itself and the garbage collection

algorithm have different cache and memory behaviors, which interact in complex ways.

Relating performance improvements to the characteristics of various benchmarks, to

offer a tuning strategy, is beyond the scope of this thesis and is left for future work.

Within the limits of the effects that we have studied, the primary limitation of our

experiments is the small set of heaps sampled. Over time we expect to gather heaps from

97

a wider range of applications. AIso, we expect to impIement more garbage collectors

and report on them, including the generational collectors described previously, which

are still not fully operational.

Final!y, there are sorne marking policy considerations with older-first collection

that we did not explore in our experiments. This is left for future work. One consider

ation is when to trigger the marking phase. If we mark objects too often, the marking

phase significantly degrades overall performance. This is the case of the naive marking

policy that we explained in Chapter 9. If we mark too soon in advance, objects have

not had as much time to die, so we reclaim fewer dead objects.

10.6 Conclusion

In this chapter, we presented our experimental results which provide comparison

points between the algorithms presented so far. We presented the platform we used

to realize our experiments, and the benchmarks employed to conduct them. Then,

we described our experimental setting and showed our results, which were obtained

using diverse implementations of the semi-space and the older-first algorithms. More

importantly, we discussed our results to reveal the inherent space-time trade-offs of al!

collector algorithms. Using our techniques, we have shown that a garbage collector

can deliver competitive collection performances and even surpass that of a traditional

collector on some benchmarks.

Chapter XI

RELATED WORK

Research has been done on several techniques related to garbage collection. In

[Blackburn ü2a], the authors identify five key insights for copying garbage collection. (1)

Generational algorithms exploit the hypothesis that most objects die young. (2) They

assume that older objects are longer-lived and thus collected less often. (3) Using small

nurseries and incremental algorithms can improve response times. (4) Small nurseries

and copying collectors can improve data locality. (5) Giving the very youngest objects

time to die can improve collector performances. Studies [Caudill 86; Ungar 92; Hicks 97;

Hicks 98] have further shown that (6) segregating large objects can provide performance

improvements. (7) The choice of a garbage collection algorithm can improve mutator

locality [Blackburn 04a]. (8) Performance-critical software can embrace modulaI' design

and high-levellanguages [Blackburn 0,1b].

In this chapter, we review sorne previous related works.

11.1 Garbage Collection Algorithms

In this section, we look at other implementations of both the older-first collector

algorithm and the generational collector algorithm. We non-exhaustively highlight sorne

of the most important advantages and drawbacks of these implementations.

99

11.1.1 Ülder-First Collectors

Simulation and Prototyping

In [Stefanovié 99c; Stefanovié 99b], the authors are among the first to put forward

the older-first collector algorithm. They use a cornbination of simulation and prototyp

ing to evaluate both the algorithm and the write barrier rnechanism that they suggest.

Theil' write barriel' applies directional filtering to ignore useless stores. Sometimes only

5% of the total number of stores are remembered when their filter is used. The authors

measured the space overhead caused by their older-first collector to be 1% of the heap

size. They found that the costs of filtering and rernembering stores offsets the copying

cost reduction.

Theil' design is based on dynamically al10cating fixed-size blocks to the various

heap regions, using a block table to map addresses to remembered sets. This strategy

may increase the fragmentation and nullify the overall performance in practice. It needs

cooperation from the operating system to acquire and release address space as the heap

progresses from higher to lower addresses. Furthermore, their directional filtering tactic

is possible only when the collector uses an environment with a large address space.

These design choices greatly reduce the number of compatible platforms.

Older-First Collector in Jikes RVM

The same authors [Stdanovié: 9~bl join forces with others [Stefanovic 02] to put

into practice, evaluate, and report on their ideas. They propose sorne modifications

to their former design, mostly because their collector uses a 32-bit environment. The

directional filtering strategy employed forces the col1ector to sirnulate a larger address

space.

Theil' older-first collector uses an allocation region and a copy reserve. Both

can be viewed as first-in-first-out queues of windows. Whenever ail usable memory is

consumed in the allocation region, the collector collects the oldest window, copying ail

100

survivors to the copy reserve. When al! usable space is consumed and only survivors fil!

the heap, the collector interchanges the roles of the two queues before collecting again.

Their write barrier audits and filters pointer stores involving two windows, reducing the

number of remembered pointers. A time-of-death value is coupied with each window

and used to order the collection of windows.

The fil ter introduces variability and stochastic behavior in the collectoI. When

the time-of-death values of both the allocation and the copy queues conftict, the collector

collects an unfixed number of windows to reset these values. The special case, where

the time-of-death value reaches the largest value allowed by the operating system, is

eliminated.

Their study shows that older-first collectors can perform as the simulation results

suggest. The collector they propose does not bound pauses, increases write barrier

costs, and fails to provide completeness and promptness. Therefore, their .solution is

incomplete.

11.1.2 Generational Col1ectors

Renewal-Older-First

Hansen and Clinger [Hansen 02] propose a renewal-older-first (RüF) generational

collector which divides the heap into two generations, and always collects the older

generation. The RüF algorithm groups objects according to their renewal age, which

is defined as the time that has passed since the object was last classified as reachable

by a collection within its generation, or as its actual age if it has never been considered

for collection. After each collection, they assume that the survivors are the youngest

objects in the heap.

They implement the RüF algorithm by dividing the heap into steps that contain

objects of similar age. The steps are arranged from youngest to oldest. Additional

steps are kept as a copy reserve. A policy parameter determines the dividing line

101

between the younger and older generations. When the older generation is collected, the

ROF collector evacuates the live data into the reserve. Then the younger generations

become the oldest steps of the ROF heap, and the steps that hold the survivors become

the youngest steps. Sorne of the free steps are used to replenish the reserve, and the

remaining free steps become available for allocation.

Hansen and Clinger also provide a 3-generational collector (3ROF) that consists

of two generations that are collected by the ROF algorithm, plus a nursery collected

as part of every collection. Their hybrid algorithm is younger-first in the sense that

it collects the nursery most often, but it is also older-first in the sense that the oldest

generation is collected more often than the intermediate generation.

Ali the collectors that the authors present use a remembered set strategy for

pointer-tracking. Their older-first collectors require objects to be stored in several sllb

sets at the same time. That requirement makes card marking and header marking less

attractive, since each card or object would need one mark bit for each subset of the

remembered set in which it might be stored.

Beltway

In [Bladcburn 02a], the authors present the Beltway framework. Beltway collec

tors use increments and belts. An increment is their unit of collection. A belt groups one

or more increments into a first-in-first-out queue. Each increment on a belt is collected

independently in FIFO order, and each belt is also collected independently. Belts are

more general than generations since ail objects within a generation must be collected at

once, but increments are independently collected and there may be multiple increments

on one belt.

Beltway proposes a range of copying collectors that exploit the key insights pre

sented so far. The generality of the Beltway framework enables the implementation

of new copying collectors but increases pointer tracking costs. However, sorne Beltway

configurations lack completeness because they fail to collect garbage cycles that span

102

more than one increment. The authors propose a three-belt generational coliector as

an alternative approach to their lack of completeness. This col1ector coliects the third

belt in its entirety only once it has grown to consume ail of the usable memory. This

configuration achieves completeness at the expense of incrementality, longer pauses, and

space overhead.

Beltway is integrated in Jikes RVM, which produces a high write-barrier activity

in the nursery due to the initialization of every object's type pointer. To eliminate this

write-barrier overhead, the authors use a single nursery increment and extend the basic

Beltway barrier to filter any pointer whose source lies in the nursery. This optimization

foregoes older-first behavior within the nursery. Thus, Beltway is not able to benefit

from multiple nursery increments. Furthermore, Jikes RVM lays out arrays and scalar

objects in different directions in the heap. The beginning of one object cannot be

determined from the previous object. Consequently, Beltway col1ectors cannot use card

tables, limiting the number of key ideas in the garbage collection literature that can be

implemented and tested.

11.2 Pointer-Tracking Using Card Marking

In this section, we look at other implementations of the card marking mechanism.

We non-exhaustively highlight sorne of the most important advantages and drawbacks

of these implementations.

Basic Aigorithm

One implementation of this scheme divides the heap into equal-sized logical cards,

each covering 2k bytes of the heap space for a fixed value k. A table indicates whether

each card might contain pointers to younger generations. To map an address to an entry

in the table, one shifts the address to the right by k bits and uses the result as an index

into the table. Whenever a reference is stored into an object, the corresponding card

becomes dirty. At collection time the dirty cards of ail generations not being collected

103

are scanned [Hosking 92].

Bit Vector

In arder to reduce space overhead, Wilson implements the card table as a bit

vector. Each generation has its own bit vector, which contains a bit for each logical

cardo In this scheme, a store check simply marks the bit corresponding to the location

being updated. At collection time, the collector scans the bit vector and, whenever

it finds a marked bit, examines ail the pointers in the corresponding card of the heap

[Wilson 8gb]. Card marking, as just described, can be fairly slow. Since a bit must

be inserted into the bit vector, the corresponding word has to be read from memory,

updated and then written back. In addition, bit manipulations usually require several

instructions on rusc processors [Hôlzlc 93].

Figure 11.1 illustrates a generational heap using a card marking mechanism. The

nursery's bit vector indicates that the fourth and fifth cards possibly contain point

ers referring to the nursery. Both of these cards must be traced at the next nursery

collection.

1010101 J 1J 1010101010101010101
Bil Veclor For The Nursery Card

Free Space

Allocaled Objects

Nursery 1 Middle-Aged 1 Didesi

Figure 11.1 Heap Layout for a Generational GC Using Card Marking

Byte Vector

Chambers and Ungar use bytes instead of bits to implement the card table [Cham

bers 92]. Every card in the heap has one byte associated with it. A card is dirtied simply

by storing a special value into its corresponding byte. Although this technique uses eight

104

times more memory to represent a card than Wilson's scheme, the space overhead is

usually still small. By using bytes instead of bits, barrier time is reduced by eliminating

word and bit manipulations.

Word Vector

A straightforward per-word bitmap implementing the card table would be pro

hibitively large in terms of memory for large systems, thus increasing the space overhead.

Per-word storage is used by Sobalvarro in [Sohalvarro 88]. It maintains a sparse data

structure to avoid large space costs. Manipulating this two-level data structure slows

down the system significantly, requiring almost twice as many additional instructions

for each store in the heap.

Page Protection

Another version of card marking matches a logical card to a page of virtual mem

ory. It uses the page protection mechanism of the operating system to detect all stores

to these pages. All the pages are first protected from storing. When a store occurs to

a page, the trap handler dirties the card and unprotects the page. Subsequent stores to

this page incur no extra overhead. Page trapping performs poorly in comparison to card

marking because pages are general1y too large and thus they fail to reach the optimum

card size [8h,'1\'/ 87; Hosking 92].

As mentionned in Chapter 2, al! these strategies force the al!ocator to place objects

within the boundaries of a cardo We must ensure that the first word of a card is a header

word which allows collection. There is unused space at the end of each cardo The object

size is also bounded by the card size. Systems using these strategies need to scan more

space in order to find the roots. These strategies force the collector to trace all the

marked cards completely, unlike the technique we propose in Chapter 4.

105

11.3 Large Object Space

In [Caudill 86], the authors are among the first to work on LOS. They introduced

the term large object space in the literature. They propose a garbage collector which

represents large array objects with a small header object called a proxy. They use a

free list to allocate large objects but do not clearly report how the LOS is collected or if

the LOS is even collected at ail. It is unclear how large an object should be before it is

included in the LOS. Moreover, they do not point out whether data containing pointers

could be included in the LOS.

Ungar and Jackson [Ungar 92] simulated a system that represents pointer-less

objects in the heap with proxies. Objects larger than 1024 bytes are considered large

objects. The authors write that for their study large objects are not longer lived than

smaller ones. They do not implement a LOS collector in their simulation. Further, they

do not give details of the LOS implementation they added to ParcPlace Smalltalk.

In [Hud~on 91], the authors propose a system that divides the heap into many

blocks. Objects larger than a block are allocated to the LOS. These blocks are of

variable sizes. Consequently, the authors stipulate the heuristic that objects larger than

8 kb should be allocated to the LOS. The latter is collected using a treadmill style

collector [Baker 92] and is never compacted. Treadmill collectors use segregated free

lists to allocate and reclaim memory in constant time but at the cost of under-utilizing

memory, pOOl' locali ty, and fragmentation [Lirn 98].

1104 Depth-first Pointer Traversai

Depth-first pointer traversa1 is usually implemented as a recursive algorithm which

uses stack space proportional to the longest path in the graph of ail reachable objects.

In [Schorr G7], the authors present the Deutsch-Schorr-Waite pointer reversai algorithm

which use a pointer inversion technique to avoid management of the stack during the

traversai of ail accessible pointers. The algorithm builds an explicit stack and threads

106

this stack through the objects encountered while traversing ail the pointers. In addition

to mar-king each object, the algorithm needs to record, for each object, the point within

the object that is currently being marked. Consequently, two bits for every pointer on

the heap are reserved for the garbage collection algorithm, increasing the space overhead.

Many works have proved the correctness of the algorithm [I\owa.ltowf:iki 79; Gerhart 79;

Lee 79]. Thomas [Thornaf:i 95] also proposes an algorithm for a recursive depth-first

copying garbage collection with no extra stack.

11.5 Conclusion

In this chapter l we described sorne previous related works, and discussed the

advantages and drawbacks of each work.

Chapter XII

FUTURE WORK AND CONCLUSIONS

In this final chapter we discuss future work on the memory manager of SableVi'vI

and present our overall conclusions. This chapter is structured as follows. In Section

12.1, we discuss various future research avenues, and in Section 12.2, we present the

overall conclusions of this thesis.

12.1 Future Work

12.1.1 Memory Manager Framework in the Field

The first part of our future work consists of releasing the instrumented version of

SableVi'vI publicly, gathering feedback from the research community, and establishing

new research and development collaborations to share ideas and develop them further.

We hope to attract and develop collaborations between SableVM and other re

search projects for building a stable, robust, extensible, and efficient memory manager.

We believe that our work on building an extensible memory manager research infras

tructure can benefit others, and enable them to develop and improve their own methods

of research to concentrate their development efforts only on chosen specialized areas.

We also hope to attract graduate students to work specifically on improving parts

of the memory manager by implementing existing and innovative techniques. For exam

pie, the current heap allocator of SableVM is a naive contiguous allocator. Improving

108

SableVM's aliocator is a suitable project for early graduate courses covering garbage

collection and memory management [Gagnon 03h].

12.1.2 Profiling Memory Usage

Developers often make memory leak tracking a low priority because common

language runtime takes care of garbage collection. What few developers realize, however,

is that both the collection and allocation behaviour of their program affect memory

manager performance.

A longer term project is to build a complete memory profiling framework on

SableVM. This memory profiling framework could be used as a tool for both researchers

and Java developers to better understand memory usage, and more specifically garbage

collection in Java programs [Cagnon o:3b]. This would be useful for detecting the causes

of memory leaks, memory management technique inefficiencies, and pOOl' runtime per

formances of application.

In general, more careful studies of issues concerning application programs would

be a good complement to our memory manager studies and we would hope to pursue

this avenue in the future.

12.1.3 Investigating Deeper Garbage Collection Techniques

The primary limitation of our current work is the small set of heaps sampled.

Over time we expect to gather heaps from a wider range of applications. This will allow

for a better validation and application of our results.

12.1.4 Selecting Garbage Collectors Based on Dynamic Observation

Several runtime systems now offer a choice of multiple garbage collectors. Eventu

ally we can expect our memory manager to select a garbage collector based on dynamic

observation of the programs that the machines execute.

109

12.2 Conclusions

In this thesis, we have introduced our memory manager research framework. One

objective of our research was to design and impiement a portable and easily modifiable

memory manager that could be used for research on various aspects of Java bytecode

execution. We also wanted to evaluate the performances achievable by such an extensible

framework.

More specifically, in this thesis we introduced the bounded frame marking tech

nique for pointer-tracking, to allow the efficient computation of the root set. Our exper

iments show that the bounded frame technique reduces both the tracing costs and the

space overhead of traditional methods, and even generates competitive performances on

many benchmarks.

We also introduced a depth-first object traversai algorithm that exploits the bidi

rectional object layout, and eliminates the space overhead caused by a recursive stack.

We described the implementation of a method to copy objects in a depth-first order

without space overhead. Our experiments show that, exploiting the static class-oblivious

copying orders (e.g., breadth-first and depth-first), we can tune the memory layout to

program traversai and thus improve performance, instead of always using the same static

copying order. Our results show that our depth-first traversai algorithm generates better

locality on almost all benchmarks, yielding improvements in performance.

We further described the implementation of a method to mark objects without

space overhead. This method guarantees that colleetors will collect all garbage. Future

work should show that our method can improve performance by reducing copying costs.

Finally, we described our large object policy that regroups large objects in memory

and makes assumptions about their lifetime. Our experiments show that segregating

large objects enables collectors to achieve better performances.

The portability of our memory manager framework was demonstrated by the

simplicity of implementing novel collectors. In particular, implemening the breadth

110

first semi-space col!ector took less than 24 hours and less than 400 lines of code.

We hope that these findings and developments shal! inspire and stimulate other

members of the community in their efforts to develop better and more efficient garbage

col!ectors.

[Adjih 96]

[Ali 981

[Appel 89]

[Attardi 98]

[Azagury 98]

[Bacon 01a]

[Bacon 01b]

[Baker 78]

[Baker 92]

Bibliography

Cédric Adjih. Mesure et caractérisation d'applications réparties. Master's thesis,
Université Paris Sud, 1996.

K.A.M. Ali. A Simple Generational Real- Time Garbage Collection Scheme. Com
puting Paradigms and Computational Intelligence (New Generation Computing),
vol. 16, no. 2, 1998.

Andrew W. Appel. Simple Generational Garbage Collection and Fast Allocation.
Software Practice and Experience, vol. 19, no. 2, pages 171-183,1989.

Giuseppe Attardi, Tito Flagella & Pietro Iglio. A Customisable Memory Man
agement Pramework for C++. Software Practice and Experience, vol. 28, no. 11,
pages 1143-1183, November 1998.

Alain Azagury, Elliot K. Kolodner, Erez Petrank & Zvi Yehudai. Combining
Card Marking with Remembered Sets: How to Save Scanning Time. In Jones
[Joncs 98], pages 10-19.

David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan & Stephen
Smith. Java Without the Goffee Breaks: A Nonintrusive Multiprocessor Garbage
Collector. In Proceedings of SIGPLAN 2001 Conference on Programming Lan
guages Design and Implementation, ACM SIGPLAN Notices, Snowbird, Utah,
June 2001. ACM Press.

David F. Bacon & V.T. Rajan. Concurrent Cycle Collection in Reference Counted
Systems. In J0rgen Lindskov Knudsen, editeur, Proceeùings of 15th European
Conference on Object-Oriented Programming, ECOOP 2001, volume 2072 of
Lecture Notes in Computer Science, Budapest, June 2001. Springer-Verlag.

Henry G. Baker. List Processing in Real-Time on a Seriai Computer. Commu
nications of the ACM, vol. 21, no. 4, pages 280-94, 1978. Also AI Laboratory
Working Paper 139, 1977.

Henry G. Baker. The Treadmill, Real-time Garbage Collection without Motion
Sickness. ACM SIGPLAN Notices, vol. 27, no. 3, pages 66-70, March 1992.

112

[Baker 93]	 Henry G. Baker. 'Infant Mortality' and Generational Garbage Collection. ACM
SIGPLAN Notices, vol. 28, no. 4, April 1993.

[Barabash 03]	 Katherine Barabash, Yoav Ossia & Erez Petrank. Mostly Concurrent Garbage
Collection Revisited. In OOPSLA'03 ACM Conference on Object-Oriented Sys
tems, Languages and Applications [OOPSLA 03].

[Barrett 93]	 David A. Barrett & Benjamin G. Zorn. Using Lifetime Predictors to Improve
Memory Allocation Performance. In Proceedings of SIGPLAN'93 Conference on
Programming Languages Design and Implementation [PLDI 93], pages 187-196.

[Bartlett 88]	 Joel F. I3artlett. Compacting Garbage Collection with Ambiguous Roots. Rapport
technique 88/2, DEC Western Research Laboratory, Palo Alto, CA, February
1988. Also in Lisp Pointers 1,6 (April-June 1988), 2-12.

[Bekkers 92]	 Yves Bekkers & Jacques Cohen, editeurs. Proceedings of international workshop
on memory management, volume 637 of Lecture Notes in Computer Science, St
Malo, France, 16-18 September 1992. Springer-Verlag.

[Ben-Yitzhak 02] Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuiper & Victor Leikehman.
An Algorithmfor Parallel Incremental Compaction. In Detlefs [Detlefs 02], pages
100--105.

[Bishop 75]	 Peter B. Bishop. Garbage collection in a Very Large Address Space. Working
paper 111, AI Laboratory, MIT, Cambridge, MA, September 1975.

[Blackburn 02a]	 Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley & J. Eliot B. Moss.
Beltway: Getting Around Garbage Collection Gridlock. In Proceedings of SIG
PLAN 2002 Conference on Programming Languages Design and Implementation,
ACM SIGPLAN Notices, pages 153-164, Berlin, June 2002. ACM Press.

[Blackburn 02b]	 Stephen M. Blackburn & Kathryn S. McKinley. In or Out? Putting Write
Barriers in Their Place. In Detlefs [D(~tlds 02], pages 175-184.

[Blackburn 03a]	 Stephen M. Blackburn, Perry Cheng & Kathryn S. McKinley. A Garbage Col
lection Design and Bakeoff in JMTk: An Extensible Java Memory Manage
ment Toolkit. Rapport technique TR-CS-03-02, Australian National University,
February 2003.

[Blackburn 03b]	 Stephen M. Blackburn & Kathryn S. McKinley. Ulterior Reference Counting:
Fast Garbage Collection without a Long Wait. In OOPSLA'03 ACM Conference
on Object-Oriented Systems, Languages and Applications [OOPSLA 03].

113

[Blackburn 04a]	 Stephen M. Blackburn, Perry Cheng & Kathryn S. McKinley. Myths and Reality:
The Performance Impact of Garbage Collection. In Sigmetrics - Performance
2004, Joint International Conference on Measurement and Modeling of Computer
Systems, New York, N'i, June 2004.

[Blackburn 04b]	 Stephen M. Blackburn, Perry Cheng & Kathryn S. McKinley. Oil and Water?
High Performance Garbage Collection in Java with MMTk. In ICSE 2004, 26th
International Conference on Software Engineering, Edinburgh, May 2004.

[Blackburn 07]	 Stephen M. Blackburn, Matthew Hertz, Kathryn S. Mckinley, J. Eliot B. Moss &
Ting Yang. Profile-based pretenuring. ACM Trans. Program. Lang. Syst., vol. 29,
no. 1, page 2, 2007.

[Boehm 00]	 Hans-Juergen Boehm. Reducing Garbage Collector Cache Misses. In Tony Hosk
ing, editeur, ISMM 2000 Proceedings of the Second International Symposium on
Memory Management, volume 36(1) of ACM SIGPLAN Notices, Minneapolis,
MN, October 2000. ACM Press.

[Boehm 01]	 Hans Boehm. A garbage collector for C and C++. World Wide Web, http:
//www.hpl.hp.com/personal/Hans_Boehm/gc/. 2001.

[Caudill 86]	 Patrick J. Caudill & Allen Wirfs-Brock. A Third-Generation Smalltalk-80 Im
plementation. In Norman Meyrowitz, editeur, OOPSLA'86 ACM Conference on
Object-Oriented Systems, Languages and Applications, volume 21(11) of ACM
SIGPLAN Notices, pages 119-130. ACM Press, October 1986.

[Chambers 92]	 Craig Chambers. The Design and Implementation of the SELF Compiler, an
Optimizing Compiler for an Objected- Oriented Programming Language. PhD
thesis, Stanford University, March 1992.

[Cheadle 04]	 Andrew M. Cheadle, Anthony J. Field, Marlow Simon, Simon L. Peyton-Jones
& Lyndon While. Exploring the Barrier to Entry - Incremental Generational
Garbage Collection for Haskell. In Diwan [Diwan 04].

[Cheney 70]	 C. J. Cheney. A Non-Recursive List Compacting Algorithm. Communications of
the ACM, vol. 13, no. 11, pages 677-8, November 1970.

[Chilimbi 98]	 Trishul M. Chilimbi & James R. Larus. Using Generational Garbage Collection
To Implement Cache-Conscious Data Placement. In Jones [Jones 98], pages 37
48.

[ching Ju 01] Roy Dz ching Ju, Alvin R. Lebeck & Chris Wilkerson. Locality vs. criticality.

114

In Srikanth T. Srinivasan, editeur, ISCA '01: Proceedings of the 28th annual
international symposium on Computer architecture, pages 132-143, New York,
NY, USA, 2001. ACM Press.

[Collins 60]	 George E. Collins. A Method for Overlapping and Erasure of Lists. Communica
tions of the ACM, vol. 3, no. 12, pages 655-657, December 1960.

[Colnet 98]	 Dominique Colnet, Philippe Coucaud & Olivier Zendra. Compiler Support to
Customize the Mark and Sweep Algorithm. In Jones [Jones 98], pages 154-165.

[Corporation 98] Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
World Wide Web, http://www . spec. org/osg/ j vm98/, 1998.

[Courts 88]	 Robert Courts. Improving Locality Of Reference In A Garbage-Collecting Memory
Management-System. Communications of the ACM, vol. 31, no. 9, pages 1128
1138, 1988.

[Detlefs 02]	 David Detlefs, editeur. ISMM'02 proceedings of the third international sympo
sium on memory management, ACM SIGPLAN Notices, Berlin, June 2002. ACM
Press.

[DeTtevilie 90]	 John DeTtevilie. Experience with Garbage Collection for Modula-2+ in the Topaz
Environment. In Eric .lui & Niels-Christian Juul, editeurs, OOPSLAjECOOP '90
Workshop on Garbage Collection in Object-Oriented Systems, Ottawa, October
1990.

[Deutsch 76]	 L. Peter Deutsch & Daniel G. Bobrow. An Efficient Incremental Automatic
Garbage Collector. Communications of the ACM, vol. 19, no. 9, pages 522-526,
September 1976.

[Diwan 04]	 Amer Diwan, editeur. ISMM'04 proceedings of the third international symposium
on memory management, ACM SIGPLAN Notices, Vancouver, October 2004.
ACM Press.

[PenicheI69]	 Robert R. Fenichel & Jerome C. Yochelson. A Lisp Garbage Collector for Virtual
Memory Computer Systems. Communications of the ACM, vol. 12, no. 11, pages
611-612, November 1969.

[Gagnon 02a]	 Etienne Gagnon. A Portable Research Pramework for the Execution of Java
Bytecode. PhD thesis, McGill University, Montreal, Quebec, December 2002.

[Gagnon 02b]	 Etienne Gagnon. Sablecc, an object-oriented compiler framework. Master's the

115

sis, McGill University, Montreal, Quebec, December 2002.

[Gagnon 03a] Etienne Gagnon. Sable VM: A Research Framework for the Efficient Execu
tion of Java Bytecode. World Wide Web, http://www . sable. mcgill. cal
publications/techreports/#report2000-3, 2003.

[Gagnon 03b] Etienne Gagnon. Sable VM: a robust, clean, easy to maintain and extend, ex
tremely portable, efficient, and specification-compliant Java virtual machine.
World Wide Web, http://sablevm .org/, 2003.

[Gerhart 79] S. L. Gerhart. A Derivation Oriented Proof of Schorr- Waite Marking Algorithm.
Lecture Notes in Computer Science, vol. 69, pages 472-492, 1979.

[Group 06] Sable Research Group. Soot: a Java Optimization Pramework. World Wide Web,
http://www.sable.mcgill.ca/soot/. 2006.

[Grunwald 93] Dirk Grunwald, Benjamin Zorn & Robert Henderson. Improving the Cache Lo
cality of Memory Allocation. In Proceedings of SIGPLAN'93 Conference on Pro
gramming Languages Design and Implementation [PLDI 9;)], pages 177-186.

[G uyer 04] Samuel Guyer & Kathryn McKinley. Finding Your Cronies: Static A nalysis
for Dynamic Object Colocation. In OOPSLA'04 ACM Conference on Object
Oriented Systems, Languages and Applications [OOPSLA 04].

[Kansen 00] Lars Thomas Hansen. Older-first Garbage Collection in Practice.
North-eastern University, November 2000.

PhD thesis,

[Kansen 02] Lars Thomas Hansen & William D. Clinger. An Experimental Study of Renewal
Older-First Garbage Collection. In Proceedings of the 2002 ACM SIGPLAN
International Conference on Functional Programming (ICFP02), volume 37(9)
of ACM SIGPLAN Notices, pages 247-258, Pittsburgh, PA, 2002. ACM Press.

[Kanson 90] David R. Hanson. Fast Allocation and Deallocation of Memory Based on Object
Lifetimes. Software Practice and Experience, vol. 20, no. l, pages 5-12, January
1990.

[Kayes 911 Barry Hayes. Using Key Object Opportunism to Collect Oid Objects. In Andreas
Paepcke, editeur, OOPSLA'91 ACM Conference on Object-Oriented Systems,
Languages and Applications, volume 26(11) of ACM SIGPLAN Notices, pages
33-46, Phoenix, Arizona, October 1991. ACM Press.

[Kayes 93] Barry Hayes. Key Objects in Garbage Collection. PhD thesis, Stanford University,

116

[Hertz 05a]

[Hertz 05b]

[Hicks 97]

[Ricks 98]

[Rirzel 03]

[Rolzle 93]

[Rosking 92]

[Rosking 93]

[lluang 04]

[lludson 91]

March 1993.

Matthew Hertz & Emery Berger. Quantifying the Performance of Garbage Col
lection vs. Explicit Memory Management. In OOPSLA'05 ACM Conference on
Object-Oriented Systems, Languages and Applications, ACM SIGPLAN Notices,
San Diego, CA, October 2005. ACM Press.

Matthew Hertz, Yi Feng & Emery D. Berger. Garbage Collection Without Paging.
In Proceedings of SIGPLAN 2005 Conference on Programming Languages Design
and Implementation, ACM SIGPLAN Notices, Chicago, IL, June 2005. ACM
Press.

Michael W. Hicks, Jonathan T. Moore & Scott M. Nettles. The Measured Cost of
Copying Garbage Collection Mechanisms. In Proceedings of Second International
Conference on Functional Programming, pages 292-305, Amsterdam, June 1997.
ACM Press.

Michael Hicks, Luke Hornof, Jonathan T. Moore & Scott Nettles. A Study of
Large Object Spaces. In Jones [.Jones 98], pages 138-145.

Martin Hirzel, Amer Diwan & Matthew Hertz. Connectivity-based Garbage Col
lection. In OOPSLA'03 ACM Conference on Object-Oriented Systems, Lan
guages and Applications [OOPSLA 03].

Urs Holzle. A Fast Write Barrier for Generational Garbage Collectors. In Moss
et al. [?vlosé> 93].

Anthony L. Hosking, J. Eliot B. Moss & Darko Stefanovié. A Comparative Per
formance Evaluation of Write Barrier Implementations. In Andreas Paepcke,
editeur, OOPSLA'92 ACM Conference on Object-Oriented Systems, Languages
and Applications, volume 27(10) of ACM SIGPLAN Notices, pages 92-109, Van
couver, British Columbia, October 1992. ACM Press.

Antony L. Hosking & Richard L. Hudson. Remembered Sets Can Also Play Cards.
In Moss et al. [Moss 931.

Xianlong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss,
Z. Wang & Perry Cheng. The Garbage Collection Advantage: Improving Pro
gram Locality. In OOPSLA'04 ACM Conference on Object-Oriented Systems,
Languages and Applications [OOPSLA 04].

Richard L. Hudson, J. Eliot B. Moss, Amer Diwan & Christopher F. Weight.

117

[Hudson 92]

[Hudson 97]

[IBM 031

[Inoue 03]

[lnoue 06]

[Jones 96]

[Jones 98]

[Kowaltowski 79]

[Lee 79]

ILieberman 81]

A Language-Independent Garbage Collector Toolkit. Rapport technique COINS
91-47, University of Massachusetts at Amherst, Department of Computer and
Information Science, September 1991.

Richard L. Hudson & J. Eliot B. Moss. Incremental Garbage Collection for
Mature Objects. In Bekkers & Cohen [Bekkers 92].

Richard L. Hudson, Ron Morrison, J. Eliot B. Moss & David S. Munro. Garbage
Collecting the World: One Car at a Time. In OOPSLA'97 ACM Conference on
Object-Oriented Systems, Languages and Applications - Twelth Annual Con
ference, volume 32(10) of ACM SIGPLAN Notices, Atlanta, GA, October 1997.
ACM Press.

IBM. Tuning Garbage Collection with the 5.0 Javajtm] Virtual Machine. World
Wide Web, http://java.sun.com/ctocs/hotspot/gc5.0/gc_tuning_5.html,
2003.

H. Inoue, Darko Stefanovié & S. Forrest. Object Lifetime Prediction in Java.
Rapport technique TR-CS-2003-28, University of New Mexico, May 2003.

Hajime Inoue, Darko Stefanovic & Stephanie Forrest. On the Prediction of Java
Object Lifetimes. IEEE Transactions on Computers, vol. 55, no. 7, pages 880-892,
2006.

Richard E. Jones. Garbage collection: Algorithms for automatic dynamic mem
ory management. Wiley, Chichester, July 1996. With a chapter on Distributed
Garbage Collection by R. Lins.

Richard Jones, editeur. ISMM'98 proceedings of the first international sympo
sium on memory management, volume 34(3) of ACM SIGPLAN Notices, Van
couver, October 1998. ACM Press.

T. Kowaltowski. Data Structures and Correctness of Programs. Journal of the
ACM, vol. 26, no. 2, pages 283-301, April 1979.

S. Lee, W. P. De Roever & S. Gerhart. The Evolution of List Copying Algorithms.
In 6th ACM Symposium on Principles of Programming Languages, pages 53-56,
San Antonio, Texas, January 1979. ACM Press.

Henry Lieberman & Carl E. Hewitt. A Real- Time Garbage Collector Based on
the Lifetimes of Objects. AI Memo 569a, MIT, April 1981.

118

[Lieberman 83] Henry Lieberman & Carl E. Hewitt. A Real- Time Garbage Collector Based on
the Lifetimes of Objects. Communications of the ACM, vol. 26(6), pages 419-429,
1983. Also report TM-184, Laboratory for Computer Science, MIT, Cambridge,
MA, July 1980 and AI Lab Memo 569, 1981.

[Lim 98] Tian F. Lim, Przemyslaw Pardyak & Brian N. Bershad. A Memory-Efficient
Real-Time Non-Copying Garbage Collector. In Jones [.Jones 98], pages 118-129.

[Lin 92] Sheng-Lien Lin. Performance Evaluation of a Generation Scavenging Algorithm,
1992.

[Lins 92] Rafael D. Lins. Cyclic Reference Counting with Lazy Mark-Scan. Information
Processing Letters, vol. 44, no. 4, pages 215-220, 1992. Also Computing Labo
ratory Technical Report 75, University of Kent, July 1990.

[lv.Iartinez 90] A. D. Martinez, R. Wachenchauzer & Rafael D. Lins. Cyclic Reference Counting
with Local Mark-Scan. Information Processing Letters, vol. 34, pages 31-35, 1990.

[lv.IcCarthy 60] John McCarthy. Recursive Punctions of Symbolic Expressions and their Compu
tation by Machine. Communications of the ACM, vol. 3, pages 184-195, 1960.

[lv.Ioon 84] David A. Moon. Garbage Collection in a Large LISP System. In Guy L. Steele,
editeur, Conference Record of the 1984 ACM Symposium on Lisp and Functiona!
Programming, pages 235-245, Austin, TX, August 1984. ACM Press.

[lv.Ioss 93] Eliot Moss, Paul R. Wilson & Benjamin Zorn, editeurs. OOPSLA/ECOOP '93
workshop on garbage collection in object-oriented systems, October 1993.

[lv.Ioss 96] J. Eliot B. Moss, David S. Munro & Richard L. Hudson. PMOS: A Complete and
Coarse-grained Incremental Garbage Collector for Persistent Object Stores. In
Proceedings of the Seventh International Workshop on Persistent Object Systems,
pages 140-150. Morgan Kaufmann, June 1996.

[WIunro 99] David Munro, Alfred Brown, Ron Morrison & J. Eliot B. Moss. Incremental
Garbage Collection of a Persistent Object Store using PMOS. In Ron Morri
son, Mick Jordan & Malcolm Atkinson, editeurs, Advances in Persistent Object
Systems, pages 78-91. Morgan Kaufman, 1999.

[WIyers 95] Andrew C. Myers. Bidirectional object layout for separate compilation. In Pro
ceedings of the ACM OOPSLA symposium on Object-Oriented Programming
Systems, Languages, and Applications, pages 124-139, October 1995.

119

[OOPSLA 03]	 OOPSLA'03 ACM conference on object-oriented systems, languages and appli
cations, ACM SIGPLAN Notices, Anaheim, CA, November 2003. ACM Press.

[OOPSLA 04]	 OOPSLA'04 ACM conference on object-oriented systems, languages and appli
cations, ACM SIGPLAN Notices, Vancouver, October 2004. ACM Press.

[Ossia 04]	 Yoav Ossia, Ori Ben-Yitzhak & Marc Segal. Mostly Concurrent Compaction for
Mark-Sweep GG. In Diwan [Diwan 04].

[PLDI 93]	 Proceedings of SIGPLAN'93 conference on programming languages design and
implementation, volume 28(6) of ACM SIGPLAN Notices, Albuquerque, NM,
June 1993. ACM Press.

[Pugh 90]	 William Pugh & Grant Weddell. Two-directional record layout for multiple in
heritance. In ACM SIGPLAN Notices, pages 85-91, June 1990.

[Iteppy 93]	 John H. Reppy. A High-Performance Garbage Collector for Standard ML. Tech
nical memorandum, AT&T Bell Laboratories, Murray Hill, NJ, December 1993.

[Itbjemo 95]	 Niklas Rbjemo. Garbage Collection, and Memory Efficiency, in Lazy Functional
Languages. PhD thesis, Chalmers University of Technology, Goteborg, Sweden,
1995.

[Itovner 851	 Paul Rovner. On Adding Garbage Collection and Runtime Types to a Strongly
Typed, Statically-Checked, Concurrent Language. Technical Report CSL-84-7,
Xerox PARC, Palo Alto, CA, July 1985.

[Sachindran 03]	 Narendran Sachindran & Eliot Moss. MarkCopy: Fast Copying GC with Less
Space Overhead. In OOPSLA'03 ACM Conference on Object-Oriented Systems,
Languages and Applications [OOPSLA 03].

[Sachindran 04]	 Narendran Sachindran, J. Eliot B. Moss & Emery D. Berger. MC2 : High
Performance GaTbage Collection for Memory-Constrained Environments. In
OOPSLA'04 ACM Conference on Object-Oriented Systems, Languages and Ap
plications [OOPSLA 04].

[Schkolnick 77]	 M. Schkolnick. A clusteTing algorithm for hierarchical structures. ACM Trans.
Database Syst., vol. 2, no. l, pages 27-44, 1977.

[Schorr 67]	 H. Schorr & W. Waite. An Efficient Machine Independent Procedure for Garbage
Collection in VaTious List StructuTes. Communications of the ACM, vol. 10,
no. 8, pages 501-506, August 1967.

120

[Seligmann 95]	 Jacob Seligmann & Steffen Grarup. Incremental Mature Garbage Collection us
ing the Train Algorithm. In O. Nierstras, editeur, Proceedings of 1995 European
Conference on Object-Oriented Programming, Lecture Notes in Computer Sci
ence, pages 235-252, University of Aarhus, August 1995. Springer-Verlag.

[Sbaw 87]	 Robert A. Shaw. Improving Garbage Collector Performance in Virtual Mem
ory. Rapport technique CSL-TR-87-323, Stanford University, March 1987. Also
Hewlett-Packard Laboratories report STL-TM-87-05, Palo Alto, 1987.

[Shuf 02]	 Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel & Jaswinder Pal
Singh. Creating and Preserving Locality of Java Applications at Allocation and
Garbage Collection Times. In OOPSLA'02 ACM Conference on Object-Oriented
Systems, Languages and Applications, ACM SIGPLAN Notices, Seattle, WA,
November 2002. ACM Press.

[Smith 98]	 Frederick Smith & Greg Morrisett. Comparing Mostly-Copying and Mark-Sweep
Conservative Collection. In Jones [.Jonet> 98], pages 68-78.

[Sabalvarro 88]	 Patrick Sobalvarro. A Lifetime-Based Garbage Collector for Lisp Systems on
General-Purpose Computers. Rapport technique AITR-1417, MIT AI Lab,
February 1988. Bachelor of Science thesis.

[Saman 04]	 Sunil Soman, Chandra Krintz & David Bacon. Dynamic Selection of Application
Specifie Garbage Collectors. Rapport technique 2004-09, UCSB, January 2004.

[Stamos 84]	 James W. Stamos. Static Grouping of Small Dbjects to Enhance Performance
of a Paged Virtual Memory. ACM Transactions on Computer Systems, vol. 2,
no. 3, pages 155-180, May 1984.

[Stefanovié 94]	 Darko Stefanovié & J. Eliot B. Moss. Characterisation of Dbject Behaviour in
Standard ML of New Jersey. In Conference Record of the 1994 ACM Symposium
on Lisp and Functional Programming, pages 43-54. ACM Press, June 1994.

[Stefanovié 99a]	 Darko Stefanovié. Properties of Age-Based Automatic Memory Reclamation Al
gorithms. PhD thesis, University of Massachusetts, 1999.

[Stefanovié 99b]	 Darko Stefanovié, Kathryn S. McKinley & J. Eliot B. Moss. Age-Based Garbage
Collection. In OOPSLA'99 ACM Conference on Object-Oriented Systems, Lan
guages and Applications, volume 34(10) of ACM SIGPLAN Notices, pages 370
381, Denver, CO, October 1999. ACM Press.

[Stefanovié 99c]	 Darko Stefanovié, J. Eliot B. Moss & Kathryn S. McKinley. Age-Based Garbage

121

Collection. Rapport technique, University of Massachussets, April 1999. prelim
inary version of a paper to appear in OOPSLA'99.

[Stefanovic 02]	 Darko Stefanovic, Matthew Hertz, Stephen Blackburn, Kathryn McKinley &
J. Eliot Moss. Older-First Garbage Collection in Practice: Evaluation in a Java
Virtual Machine. In ACM SIGPLAN Workshop on Memory System Performance
(MSP 2002), Berlin, June 2002.

['Tarditi 93]	 David Tarditi & Amer Diwan. The Full Cost of a Generational Copying Garbage
Collection Implementation. In Moss et al. [Moss 93].

['Thomas 95]	 Stephen P. Thomas. Having your cake and eating it: Recursive depth-first copy
ing garbage collection with no extra stack. Personal communication, May 1995.

[Ungar 84]	 David M. Ungar. Generation Scavenging: A Non-Disruptive High Performance
Storage Reclamation Algorithm. ACM SIGPLAN Notices, vol. 19, no. 5, pages
157-167, April 1984. Also published as ACM Software Engineering Notes 9, 3
(May 1984) - Proceedings of the ACM/SIGSOFT/SIGPLAN Software Engi
neering Symposium on Practical Software Development Environments, 157-167,
April 1984.

[Ungar 88]	 David M. Ungar & Frank Jackson. Tenuring Policies for Generation-Based Stor
age Reclamation. ACM SIGPLAN Notices, vol. 23, no. 11, pages 1-17, 1988.

[Ungar 92]	 David M. Ungar & Frank Jackson. An Adaptive Tenuring Policy for Generation
Scavengers. ACM Transactions on Programming Languages and Systems, vol. 14,
no. 1, pages 1-27, 1992.

[~Vadler 87]	 Philip L. Wadler. Fixing Some Space Leaks with a Garbage Collector. Software
Practice and Experience, vol. 17, no. 9, pages 595-609, September 1987.

[~Veizenbaum 63] J. Weizenbaum. Symmetric List Processor. Communications of the ACM, vol. 6,
no. 9, pages 524-544, September 1963.

[Weizenbaum 69] J. Weizenbaum. Recovery of Reentrant List Structures in SLIP. Communica
tions of the ACM, vol. 12, no. 7, pages 370--372, July 1969.

[Wilson 89a]	 Paul R. Wilson & Thomas G. Moher. A Card-Marking Scheme for Controlling
Intergenerational References in Generation-Based Garbage Collection on Stock
Hardware. ACM SIGPLAN Notices, vol. 24, no. 5, pages 87-92, 1989.

[Wilson 89b]	 Paul R. Wilson & Thomas G. Moher. Design of the Opportunistic Garbage Col

122

lector. In OOPSLA'89 ACM Conference on Object-Oriented Systems, Languages
and Applications, volume 24(10) of ACM SIGPLAN Notices, pages 23-35, New
Orleans, LA, October 1989. ACM Press.

[Wilson 91] Paul R. Wilson, Michael S. Lam & Thomas G. Moher. Effective Static-Graph Re
organization to Improve Locality in Garbage Collected Systems. ACM SIGPLAN
Notices, vol. 26, no. 6, pages 177-191, 1991.

[Wilson 92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques.
Cohen [Bekkers 92].

In Bekkers &

[Zorn 90] Benjamin Zorn. Comparing Mark-and-Sweep and Stop-and-Copy Garbage Collec
tion. In Conference Record of the 1990 ACM Symposium on Lisp and Functional
Programming, Nice, France, June 1990. ACM Press.

