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Résumé 

Ces dernières années, des recherches ont été menées sur plusieurs techniques reliées 

à la collection des déchets. Plusieurs découvertes centrales pour le ramassage de miettes 

par copie ont été réalisées. Cependant, des améliorations sont encore possibles. 

Dans ce mémoire, nous introduisons des nouvelles techniques et de nouveaux al

gorithmes pour améliorer le ramassage de miettes. En particulier, nous introduisons une 

technique utilisant des cadres délimités pour marquer et retracer les pointeurs racines. 

Cette technique permet un calcul efficace de l'ensemble des racines. Elle réutilise des 

concepts de deux techniques existantes, card marking et remembered sets, et utilise 

une configuration bidirectionelle des objets pour améliorer ces concepts en stabilisant 

le surplus de mémoire utilisée et en réduisant la charge de travail lors du parcours des 

pointeurs. Nous présentons aussi un algorithme pour marquer récursivement les objets 

rejoignables sans utiliser de pile (eliminant le gaspillage de mémoire habituel). Nous 

adaptons cet algorithme pour implémenter un ramasse-miettes copiant en profondeur 

et améliorer la localité du heap. Nous améliorons l'algorithme de collection des miettes 

older-first et sa version générationnelle en ajoutant une phase de marquage garantissant 

la collection de toutes les miettes, incluant les structures cycliques réparties sur plusieurs 

fenêtres. Finalement, nous introduisons une technique pour gérer les gros objets. 

Pour tester nos idées, nous avons conçu et implémenté, dans la machine virtuelle 

libre Java SableVM, un cadre de développement portable et extensible pour la collection 

des miettes. Dans ce cadre, nous avons implémenté des algorithmes de collection semi

space, older-first et generational. Nos expérimentations montrent que la technique du 

cadre délimité procure des performances compétitives pour plusieurs benchmarks. Elles 

montrent aussi que, pour la plupart des benchmarks, notre algorithme de parcours en 

profondeur améliore la localité et augmente ainsi la performance. Nos mesures de la 



xiv 

performance générale montrent que, utilisant nos techniques, un ramasse-miettes peut 

délivrer une performance compétitive et surpasser celle des ramasses-miettes existants 

pour plusieurs benchmarks. 

Mots clés: Ramasse-Miettes, Machine Virtuelle, Java, SableVM 



Abstract 

Over the years, research has been done on several techniques related to garbage 

collection. Many key insights for copying-based generational garbage collection tech

niques have been revealed. Yet, there is still room for improvement. 

In this thesis, we introduce various new techniques and algorithms to improve 

garbage collection. In particular, we introduce the bounded frame marking technique 

for tracking pointers. This technique allows for efficient computation of the l'oot set. It 

reuses concepts from two existing techniques, card marking and remembered sets, and 

uses a bidirectional object layout to improve them by regulating space overhead and 

reducing the pointer scanning worldoad. We also present an algorithm to recursively 

mark reachable objects without using a stack (eliminating the usual space overhead). 

We adapt this algorithm to implement a depth-first copying collector and increa.se heap 

locality. Vve improve the older-first garbage collection algorithm and its generational 

variant by adding a mark phase that guarantees the collection of all garbage, including 

cyclic structures spanning many windows. Finally, we introduce a technique to deal 

with large objects. 

In order to test our ideas, we have designed and implemented a portable and 

extensible garbage collection framework within the SableVM open source Java virtual 

machine. In it, we have implemented semi-space, older-first, and genel'ational copying 

garbage collection algorithms. Our experiments show that the bounded frame technique 

yields competitive performances on many benchmarks. They also show that, for most 

benchmarks, our depth-first traversaI algorithm improves locality and thus incl'eases 

performance. Our overall performance measurements show that, using our techniques, 

a garbage collector can deliver competitive performance and surpass existing collectors 

on various benchmarks. 
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Chapter 1 

Introduction and Contributions 

1.1 Introduction 

1.1.1 Automatic Memory Management 

Modern virtual machines use automatic memory management and free the pro

grammers from explicit memory allocation and deallocation. This software engineering 

principle of abstraction is the method software engineers use to manage the complexity 

of systems. Hiding details from the programmers improves programming productivity. 

As shown in Figure 1.1 (see [Gagnem œbJ), the memory manager module is part of 

current state-of-the-art virtual machines. 

Modularity is another software engineering principle that engineers use to build 

extensible, reusable, and portable system components. For example, the Boehm-Demers

Weiser conservative deallocators [Boehm 01] are modules allowing C++ programmers to 

allocate memory without explicitly deallocating memory that is no longer useful. Pro

grammers are increasingly choosing object-oriented languages to take advantage of these 

software engineering benefits. Commonly proposed estimates are that up to 40 percent 

of the development time is spend implementing memory management procedures and 

debugging errors related to explicit storage [R.ovner 85]. 
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Figure 1.1 Java Virtual Machine Overview 

1.1.2 Garbage Collection Algorithm 

Memory allocation is often quite simple. The virtual machine allocates a large 

contiguous block of memory called the heap. Every time a program request memory, 

the virtual machine reduces the large block accordingly to the requested memory size. 

When ail the usable memory is exhausted, the deallocation mechanism is triggered. 

Memory deallocation is far more complex. Copying garbage collection is a form of 

automatic memory deallocation. A garbage collector is a piece of software that recycles 

unreachable memory or garbage. Current state-of-the-art Java virtual machines imple

ment advanced garbage collection techniques to deliver high-performance execution of 

Java bytecode [Gagnon ü3b; IBI"! 031. Popular techniques implement both non-copying 

(reference counting and mark-and-sweep) and copying (mark-and-compact, semi-space, 

generational, and incremental) collectors. 
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1.1.3 Garbage Collector Implementation 

A garbage collector should provide completeness, the guarantee to reclaim all 

garbage eventually. On that account, standard copying collectors require a copy reserve 

equal to twice the size of the maximum live data for a program. In order to provide 

responsiveness, older-first and generational copying algorithms collect only a region of 

the heap at a time. But sometimes they do full collections which require a copy reserve 

equal to the usable memory. Sorne algorithms, as the mark-copy collection algorithm 

[SachindréUl 03], use memory space more efficiently. It marks live data and always copies 

a number of survivors that fit into a fixed-sized region. The mark phase, however, 

requires additional space for a mark stack [Sachindran 0:3]. 

Collectors that partially collect the heap, track pointers that refer from one region 

to another, and include these pointers in the root set. These collectors mainly use card 

marking or remembered set methods to maintain their root set. Card marking increases 

work scanning at collection time. On the other hand, remembered sets can have a 

significant space overhead (up to 25% of the maximum live size for the mark-copy 

algorithm which further does not track all pointers [Sachindran 03]). 

1.1.4 Garbage Collection Costs 

Current garbage collectors still have significant performance overhead [Black

burn 02a]. The costs of copying garbage collection include (1) the cost of copying 

objects when they survive a collection, (2) the cost of pointer-tracking, and (3) the cost 

of the interaction between the cache and memory behaviors of both the program and 

the garbage collector [8 Lefimovié 99a]. 

Research [Hertz 05a] has shown that when physical memory is scarce, paging 

causes garbage collection to l'un an order of magnitude slower than explicit memory 

management. Garbage collection can degrade overall performance by nearly 70%. Over

ail performance is highly dependent upon the behavior of the application as well as on 
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the available resources. 

1.1.5 Larger Space and Poor Locality 

No single garbage collector enables the best performance for aIl programs and al! 

heap sizes [Soman 04]. Garbage collection can comprise 35% of execution time when 

the heap space is tight on sorne systems [Blackburn 02a]. The best total execution time 

is not always achieved simply by using a larger heap, however. Locality may degrade 

with large heaps, increasing paging and cache miss rates. 

Programs often access objects of a similar age closely together [Stefanovié 9%; 

Blackburn 02a]. Because copying garbage collectors move objects, they have the oppor

tunity to improve locality with consequent benefits for cache and translation loolcaside 

buffer (TLB) behavior. At collection time, for an object-oriented language such as Java, 

garbage collectors may execute a depth-first or a breadth-first traversaI of the object 

tree to better tune memory layout for program traversa!. Static orders are problematic, 

with large differences of up to 25% in total time for sorne benchmarks [HlIang 04], when 

traversaI patterns do not match the collectors single order. Achieving high performance 

always remains a challenge. 

1.1.6 Customisable Memory Manager 

Several techniques have been developed to make garbage collection feasible in 

many situations, including real time applications. Optimal performance cannot always 

be achieved by a uniform general purpose solution [Attardi 98]. 

A current general trend in software development is towards customisable systems 

to give the developer greater fiexibility and control over the functionality and perfor

mance of their application. MMTk [Blackburn D4b] is an extensible framework for 

building garbage collectors. MMTk uses design patterns and compiler cooperation to 

combine modularity and efficiency. Beltway [Blackburn 02a] is another framework that 

significantly generalizes existing copying collectors. This generality enables developers 
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to exploit a larger design space and develop better collectors. 

1.2 Research Motivation and Objectives 

We should note that various methods exist for memory allocation. Our research 

focuses solely on copying garbage collection algorithms. 

1.2.1 Copying Garbage Collectors 

The main motivation behind this thesis was to study and understand sorne copying 

garbage collectors. In order to address these objectives, we have implemented and tested 

sorne popular algorithms for semi-space, older-first, and generational copying garbage 

collection on SableVM [Gagnon 03b], an extremely portable, efficient, and specification

compliant Java virtual machine. 

We have exploited the bidirectional-object layout furnished in SableVM to imple

ment new techniques for pointer tracking and object traversais. Our pointer-tracking 

technique combines both card marking and remembered set methods to regulate space 

overhead and reduce work scanning. We also have designed a new algorithm to mark 

the object tree recursively without space overhead. We use this algorithm to imple

ment a depth-first copying collector. In this thesis we report our overall performance 

measurements and show that, using our techniques, a garbage collector can deliver com

petitive collection performance and even surpass that of a traditional collector on sorne 

benchmarks. 

1.2.2 Research Framework 

Many academic research projects have limited resources. Sometimes, the human 

resources dedicated to a project are limited to a very small team of researchers. One 

of the objectives of this research is the development of an openly available memory 

manager framework suitable for performing research experiments with minimal effort. 

In order to achieve this goal, this framework must be easily extensible, thus allowing 
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experiments with new algorithms for memory allocation and deallocation. This research 

framework must also be easily portable to new platforms with minimal effort, in order 

to perform experiments on a variety of systems. Finally, the memory manager must also 

deliver an acceptable performance, so that experiments can be done running real-world 

applications, rather than toy benchmarks. 

We have designed, and implemented on SableVM [Gagnon 03b], a portable and 

extensible framework for building and testing garbage collectors. SableVM provides 

a logical partitioning of runtime memory that simplifies memory management. This 

memory parti tioning allows SableVM to use a configurable collector to manage the 

Java heap, and to use partition-specifie memory managers for the l'est. The colleetors 

share all common mechanisms, palicies, and functionalities and use the exact same 

implementation, allowing us ta obtain more accurate experimental results. 

1.2.3 Specifie Research Objectives 

Research has identified many key insights for copying garbage collection. Cur

rent state-of-the-art colleetors impiement generational [Ungar 84; Appel 89; Lin 92; 

Bal<er 9:3; Cllilirnhi 98; Ali ü8; Blackburn 02a] and incremental [Deutsch 76; Baker 78; 

Baker 92; Hansen 00; Hansen 02; St.cfanovic 02] algorithms and exploit data locality 

[Courts 88; Chilimbi 98; Boehm 00; Blackburn 04a; Huang O'J], object lifetime [Lieber

IIlan 81; Lieberrnan 83; Hanson 90; 13arrctt 93; Inoue 03; Blackburn 07], and object 

segregation [CUUlJill 86; Ungar 92; lIicks 98; Colnet 981 to provide better performances. 

Current software implementations also use modulaI' design to provide extensibility and 

flexibility to the developers [Blackburn 02a; Blackburn 0:3a; Blackburn 04b], even in the 

presence of critical performance software. Given these key insights the specifie objectives 

of this research are to: 

• research new garbage collection techniques to address these key insights, 

• evaluate the relative performances achievable by copying collectors implementing 
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our innovative techniques, 

•	 measure the performances of the proposed techniques, 

•	 design and implement a portable and easily modifiable memory manager. 

A less formaI objective is to keep the framework as simple as possible, leaving the 

development of more advanced techniques to future interested users of this framework. 

1.3 Contributions 

In this section, we list the contributions of this thesis. 

One contribution of this thesis is the memory manager framework itself. Dur

ing this research, we have integrated the memory manager framework on SableVM 

[Gagnon 0:31>], an open-source virtual machine for Java. We think that the clearness 

and sharpness of its internaI design makes it a valuable framework for conducting re

search projects on memory manager techniques. 

The 2 kinds of object layouts implemented on SableVM enable designers to explore 

a larger design space and develop better collectors. The memory manager framework 

has embedded debbuging and testing features suitable for the evaluation of new ideas. 

Thus, the contributions of this thesis are: 

•	 The introduction of an innovative technique to track pointers efficiently in presence 

of a partitioned heap, without creating too much space overhead. Experiments 

show that using our technique to reduce both the tracing costs and the space 

overhead of the card marking and the remembered set techniques respectively, we 

can engender competitive performances. 

•	 The introduction of an algorithm, which exploits the bidirectional object layout 

that groups together aU reference fields, ta traverse the abjects in the heap using 
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a depth-first order without space overhead. We use this algorithm to implement 

the two following methods. 

•	 The implementation of a method to copy objects in a depth-first order without 

space overhead. Our experiments show that, exploiting the static class-oblivious 

copying orders (e.g., breadth-first and depth-first), we can tune memory layout 

to program traversai and improve performance, instead of always using the same 

static order. 

•	 The implementation of a method to mark objects without space overhead. This 

method guarantees that col1ectors will collect ail garbage. 

•	 The introduction of a large object policy that regroups large objects in memory 

and makes assumptions about their lifetime. Our experiments show that large 

object segregation yields performance improvements. 

•	 The implementation of many garbage collectors which offer the developers the 

ability to customise the memory manager framework on a per-application basis. 

The framework allows the developers to exploit application specifie behavior, and 

our experiments show that it may also improve performance. The collectors share 

ail common mechanisms and provide reusable components for future implementa

tions, which improve the programming productivity and reduce the development 

effort. 

•	 The development and the planned public release of the memory manager research 

framework. 

1.4 Thesis Organization 

The remainder of this thesis is structured as follows. In Chapter 2, we describe 

some popular garbage collection algorithms. We also present points of comparison often 

used to compare these garbage collection algorithms. In Chapter 3, we describe the 

older-first algorithm in more details. In Chapter 4, we introduce a new method that 
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combines the remembered set and the card marking mechanism to improve efficiency 

and precision while tracking pointers. In Chapter 5, we discuss the garbage structures 

and introduce a depth-first traversai algorithm for marking objects without space over

head. In Chapter 6, we describe a technique for segregating long-lived large objects in a 

space which is less often collected. In Chapter 7, we describe a generational older-first 

algorithm which provides incremental collection for aIl of its generations. In Chapter 

8, we introduce a depth-first semi-space copying collector that uses the objects traver

saI previously introduced to improve program locality. In Chapter 9, we discuss the 

implementation of our memory manager framework. In Chapter la, we describe our ex

perimentation setting, and present our overall performance measurements. In Chapter 

11, we present sorne related works. Finally, in Chapter 12, we discuss possible future 

work and present our conclusions. 



Chapter II 

GARBAGE COLLECTION 

A garbage collection system is a form of automatic memory management. It 

eliminates a significant source of software defects by freeing programmers from explicit 

memory allocations and deallocations. By removing the burden of explicitly reclaiming 

memory from the programmer, well-known classes of errors, including dangling ref

erences and certain kinds of memory leaks, can be avoided [\Vilson 92; Wacller 87]. 

Collectors also improve memory modularity and programmer productivity [Rüjemo 95]. 

Because of these advantages, garbage collection has been incorporated as a feature in a 

number of mainstream programming languages. 

The implementation of an efficient garbage collector is complex. Manyalgorithms 

have been proposed to provide completeness, i.e. the guarantee to reclaim garbage even

tually. Basic algorithms include mœrk-and-sweep collection [Smith 98; McCarthy 60], 

semi-space copying collection [Smith 98; Feniche! 69], and generational copying collec

tion [Chen.dle 04]. Each algorithm has a number of advantages over the others. The 

best performance for a program (also called a mutator) and a heap size is achieved by 

selecting and properly tuning the appropriate garbage collection algorithm. In the best 

case, each program should have its own garbage collector tuned specifically to meet the 

program's needs and the technical restrictions of the system. 

In this section, we introduce the memory manager, the allocator, and the collector. 

Then we describe specifie points of comparison often used in the literature dealing with 
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garbage collection algorithms. Finally, we highlight the most popular garbage collection 

algorithms. Some related constructs such as write barrier, remembered set, and card 

marking are also presented. We further compare algorithms and describe some of their 

implementations. 

2.1 Memory Manager 

The memory manager can be divided in two parts: the allocator which allocates 

memory and the collector which recycles memory that the mutator is unable to reach. 

This unreachable memory is also called garbage. The mechanism that recycles memory 

is called garbage collection (GC). 

2.1.1 Memory Allocator 

Dynamic memory allocation is an important part of many programs. Unnecessary 

allocation can decrease program locality and thus increase fragmentation and execution 

time. A previous study [Grunwald !):3] has shown how the design of a memory allocator 

can significantly affect the reference locality ofvarious applications. Their measurements 

show that poor locality in sequential-fit algorithms reduces program performance, both 

by increasing paging and cache miss rates. 

By dynamic memory allocation, we mean that the memory for a program is 

taken from a large area of previously reserved memory called the heap. The size of the 

allocation can be determined at run-time. The lifetime of the allocation does not depend 

on the current procedure or stack frame. The allocated memory region is accessed 

indirectly, usually via a reference. The precise algorithm used to organize the memory 

area and to allocate and deallocate chunks is hidden behind an abstract interface and 

may use any of the methods described above. The allocator is the component of software 

that dynamically allocates memory. 
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2.1.1.1 Contiguous Allocator 

The basic algorithm is usually quite simple to implement. It uses a pointer to 

reference the next free space in the heap. When the mutator requests some heap space, 

the allocator checks if the requested space is available. If this is the case, the pointer 

is simply returned and updated to reference the following unused space. Otherwise, 

the collector is called to free the heap from the garbage. This is called a contiguous 

allocator. In an object-oriented environment, contiguous allocators append new objects 

to the end of a contiguous space by incrementing a bump pointer with the size of the 

new object. 

2.1.1.2 Free-List Allocator 

Some systems implement a different scheme of dynamic memory allocation. Some

times, a free list is used to connect unused blocks of memory together in a linked list, 

using the first word of each block as a pointer to the next. This technique is most 

suitable for allocating from a memory pool, where all objects have the same size. In 

such a context, free lists make the allocation and deallocation operations very simple. 

To free a block, we just add it to the free list. To allocate a block, we simply remove it 

from the end of the free list and use it. 

In a language like Java, memory allocation is done using object size. The blocks 

have variable sizes. This means that the allocator may have to search for a block that 

suits its request. This operation can be very time consuming. Also, free lists have the 

disadvantage of pOOl' reference locality resulting in pOOl' cache utilization. Handling the 

allocation requests for large blocks is even more time consuming. It has been shown 

that even algorithms attempting to be space-efficient by coalescing adjacent free blocks 

show pOOl' reference locality [Grunwald 94 All these fiaws affect the benefits of space 

efficiency and consequently execution time. 

Another approach uses a free-list allocator that organizes memory into k size
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segregated free-lists. Each free list is unique to a size class and is composed of blocks 

of contiguous memory. An object is allocated into a free block of the smallest size class 

that accommodates the object. The space-efficient free-list reduces total collector load. 

However, the mutator's locality in the context of contiguous allocation provides fewer 

misses at all levels of the cache hierarchy [Blackburn 04a]. As heap size increases, the 

spatial locality of objects allocated close together in time is key to better performance. 

In this study, we opt for the simplicity and efficiency of the contiguous allocator 

strategy. The allocator is just a necessity for our work. However, we concentrate our 

efforts on the deallocation mechanism. 

2.1.2 Garbage Collector 

Dynamic memory deallocation is as important as allocation. If reclamation is not 

performed, or if some objects are accidently not reclaimed (memory leak), programs 

can fail when they reach the memory size limit. The collector is the component that 

deallocates memory. It determines which objects in the heap are either dead or unreach

able. It reclaims the storage used by these objects and feeds back the unused space to 

the allocator. An implementation of efficient garbage collection is complex. There are 

lots of algorithms aimed at collecting the heap. Each of them present advantages and 

disavantages and none provide the best performances in all cases. 

There exists two major classes of garbage collectors: tracing and non-tracing 

collectors. Non-tracing collectors (mainly using reference counting) cannot reclaim cyclic 

data structures. They are a poor fit for concurrent programming models and have a 

high reference count maintenance overhead. 

AH tracing collectors must trace a subset of the heap looking for reachable (or live) 

objects. They start from a precomputed set of references (called the root set) for finding 

reachable objects. They identify live objects by computing a transitive closure from the 

roots. AlI objects unreachable directly or indirectly from the roots are considered as 

garbage. In a Java virtual machine, the root set includes stack variables, registers, 
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and class variables. Figure 2.1 illustrates the concepts of roots, reachable objects, and 

garbage. 

Heap 

U Unrc:lChahlc Objccl> (garbagel 
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Figure 2.1 Roots, Reachable Objects, and Garbage 

The rest of this section describes sorne garbage collection algorithms. We first 

present sorne points of comparison for garbage collection. 

2.2 Points of Comparison 

Users have distinct requirements of garbage collection. When choosing a partic

ular garbage collection system, we must first identify our needs and then select and 

appropria.tely tune the collector that best fulfills our requirements. Table 2.1 non

exhaustively introduces sorne points of comparison for garbage collection usually found 

in the literature. 

Pause Time 

Pause time or latency refers to the time delay between the moment a collection 

is initiated and the moment it is completed. A pause is the time when an application 

appears unresponsive because garbage collection is going on. When a pause happens, 
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Point ~ Meaning 

Pause Time time used to collect objects 
Throughput fraction of time spent in the mutator 
Promptness time between when an object becomes dead and when 

the memory becomes available 
Completeness garbage must be completely collected 

Space Overhead amount of space used to realize a garbage collection 
Unused Space amount of allocatable space unused when garbage col

lection happens 
Fragmentation process of memory being divided into smaller frag

ments of memory 
Temporal Locality objects referenced at a nearby time are close to each 

other in memory 
Spatial Locality objects close to each other in memory are referenced 

at a nearby time 

Table 2.1 Points of Comparison of Garbage Collection 

we need to trace, copy, and sometime mark objects. Pause time thus includes time for 

copying, tracing, and marking. 

Throughput 

Throughput indicates the ratio between the mutation and application time, the 

latter being the summation of both pauses and mutation time. Depending on the 

context, someone may consider the right metric to be pause time. For instance, in a 

real-time or interactive environment even short pauses may be intolerable. For a web 

server however, the right metric is usually throughput. Pauses during garbage collection 

may be obscured by network latencies. 

Completeness and Fragmentation 

When choosing or implementing garbage collectors, certain properties, such as 

completeness to prevent memory leaks or prematured out-of-memory errors, should 

be attained. Others, such as fragmentation and promptness to maintain the overall 
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performance, should carefully be considered. Fragmentation happens when different 

sized memory blocks are allocated and freed repeatedly. The allocator may not find an 

empty block with exactly the wanted size, so it uses a larger block. The unused part 

may be used for other even smaller allocations. If this happens too often, many of these 

small unused parts (or fragments) appear. 

Memory fragmentation increases the amount of unused space, resulting in more 

frequent collections. It also degrades the locality and the efficiency of object allocation, 

introduces premature garbage collections, and may even cause a failure to satisfy an allo

cation request [Ossia 04; Barahash 03]. Thus, memory fragmentation has a big impact 

on overall performance. A lack of promptness may cause fragmentation. So, alloca

tors and collectors must cautiously manage both of these criteria to avoid performance 

degradation. 

Space Overhead and Unused Space 

On systems with limited physical memory, space overhead and unused space are 

crucial concerns to observe. In such a situation, a collector with a significant space 

overhead may cause an out of memory error, while another collector would still be able 

to realize its collections. Even a small amount of unused space can negatively affect 

throughput and consequently decrease overall performance in the presence of limited 

memory. 

Locality 

Ali collectors are affected by locality. Many studies have been made to develop col

lectors which use locality as its primary criteria [Shuf 02; Courts 88; Huang 04; Cuyer Ckt; 

Chilimbi 98; Hirzel 0:3]. Most of these locality-based collectors aim at reducing the num

ber of cache misses in order to improve overall performance. This phenomenon has long 

been recognized as an important characteristic of program behaviour. Current memory 

hierarchies exploit reference locality to reduce load latency and thereby improve proces
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sor performance [ching .J II 01]. These hierarchies exploit spatial locality by fetching a 

region of memory rather than just the accessed data. Caches exploit temporallocality 

by retaining recently accessed cache blocks. Most cache management schemes exploit 

locality to increase the fraction of memory accesses satisfied by the cache (i.e., cache hit 

ratio) and thus enhance performance. 

When choosing and tuning a particular garbage collection system, one has to 

weigh ail these considerations. Users must understand their environment and the appli

cation's behavior and consciously manage these concerns to generate better performance. 

The rest of this chapter introduces sorne algorithms which collect garbage and provides 

important points of comparison for each of them. 

2.3 Reference Counting 

Reference counting collectors count incoming pointers for each object, and reclaim 

this object when its count reaches zero. The object's reference count is incremented when 

the object is referenced, and decremented when such a reference is destroyed [Collins GO]. 

Thus, reference counting updates reference counts on each pointer stored. 

Designers typically use a free-list to allocate memory on a per-object basis, and 

by doing so they allow the collector to reclaim garbage immediately. Reference counting 

performs recursive deletion when an object's reference count drops to zero. Intuitively, 

one can think of reference counting as operating upon dead objects; it traverses the 

object graph for ward to find garbage, starting with the set of objects whose reference 

counts were reduced to zero. 

Table 2.2 summarizes the impacts of reference counting for comparison purposes. 

Let us describe these impacts more precisely. 
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RC 
Pause Time v 
Throughput v 
Promptness e Meaning 
Completeness - (b)ad, (g)ood, (v)ery good, (e)xcellent 

Space Overhead g (-) not provided, (+) provided 

Unused Space b 
Fragmentation b 
Locality b 

Table 2.2 Points of Comparison for Reference Counting 

Fragmentation, Unused Space, and Locality 

A memory manager which does not move objects may suifer from memory frag

mentation. Designers often implement a free-list allocator with reference counting. 

Even though this technique is suitable for environments which create objects of equal 

size, it may cause significant fragmentation in an environment using a language such as 

Java which creates objects of variable sizes. This fragmentation implies more unused 

memory. Further degradation of the locality of objects usually leads to a loss of per

formance. However, reference counting employing a proper allocation strategy usually 

exploits memory space efficiently. 

Throughput 

Reference counting does not trace objects and often does not move them too much 

thanks to a generally used free-list allocator. Thus, the deallocation is usually very fast 

and yields a good throughput. 

Pause Time, Space Overhead and Promptness 

Reference counting produces very short pause times, which makes it suitable for 

real-time applications [Blackburn o:3b]. In addition, it allows the collector to reclaim 

garbage promptly. However, the cost of updating reference counts every time a root 
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pointer is updated is often much too high for high-performance mutators. Consequently, 

some form of deferred reference counting has been proposed by authors which trade-off 

promptness for space overhead [Deutsch 76; DeTreville 90; Bacon CHa], thus improving 

overall performance at the expense of longer pauses. 

Reference counting performs recursive deletions. The amount of space consumed 

by a recursive traversaI increases space overhead as it is done by reference counts. The 

space for the traversaI stack can be eliminated (see Chapter 5). Weizenbaum proposes 

a non-recursive method for freeing [\Veizenbaurn 63]; it reduces the space overhead at 

the expense of promptness. 

Completeness 

Reference counting inherently fails to collect cyclic garbage. If two objects refer 

to each other, neither will be collected as their mutual references never let their refer

ence counts equal zero. However, some solutions such as the backup tracing collector 

[Wei7,enbaurn 69] and the trial deletion algorithm [Bacon Olb; Mart.inez 90; Lins 92] 

have been proposed. 

2.4 Mark and Sweep 

Mark refers to the marking process during which reachable objects are marked. 

Unmarked objects are freed and the resulting memory is made available to the allocator 

during the sweep. A mark-and-sweep collector does not move objects. It coalesces 

garbage into free blocks of memory and feeds them back to a free-list allocator. 

While sweeping the heap, the collector visits ail the objects including ail garbage. 

For that reason, copying collectors have been usually preferred to mark-and-sweep col

lectors. Its collection time is proportional to the size of reachable data and not to heap 

size [Zorn 90]. 

Table 2.:3 summarizes the impacts of mark-and-sweep for comparison purposes. 
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RC MS 
Pause Time v g 
Throughput v g 
Promptness e v Meaning 
Completeness - + (b)ad, (g)ood, (v)ery good, (e)xcellent 

Space Overhead g v (-) not provided, (+) provided 

Unused Space b b 
Fragmentation b b 
Locality b b 

Table 2.3 Points of Comparison for Mark-and-Sweep 

Let us describe these impacts in more detail. 

Fragmentation, Pause Time, and Throughput 

Mark-and-sweep collectors may suffer from memory fragmentation as they do 

not move objects. Often, designers implement algorithms to compact objects during 

a collection to recover from fragmentation (see Section 2.:"5). This strategy usually 

produces longer pauses. Mark-and-sweep collectors generally provide good program 

throughput and short pause times, however [Hertz 05b]. One of their disadvantages is 

that collecting overhead is proportional to the size of memory, which can be large in 

modern systems [Zorn 90]. 

In [Den-Yitzhak 02], the authors propose a technique to reduce pause times. Their 

collector incrementally compacts small regions of the heap via copying. However, it uses 

additional space during compacting to store root set entries therefore increasing space 

overhead. It also requires many marking passes over the heap in order to compact it 

completely. This can lead to poor performance and poor throughput. 

Locality, Unused Space, and Space Overhead 

Mark-and-sweep collectors use free-list allocators which often provide poor object 

locality and bad memory use. However, a proper allocator may exploit the memory 
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space efficiently. 

A mark-and-sweep algorithm combined with a compacting strategy improves the 

spatiallocality of objects and reduces the amount of unused space. Compacting strate

gies require object relocation and add space and performance overhead to the algorithm 

[Jones 96]. Nonetheless, mark-and-sweep collectors do not need a copy reserve to hoId 

survivors of a collection. This minimizes the space overhead, although the recursive 

traversaI during the marking phase incurs a space overhead (see Chapter 5). 

Completeness and Promptness 

The mark phase visits aH reachable objects and marks them as live. The sweep 

phase passes through aH objects in memory, adding those not marked to the allocator's 

free-list. A mark-and-sweep algorithm does not reclaim dead objects as fast as reference 

counting does, but it reclaims them completely by marking all of the live objects. 

2.5 Mark and Compact 

Many systems carefully avoid fragmentation to maintain a good level of perfor

mance. There exists a negative correlation between memory fragmentation and overall 

performance. Allocation policies, such as free-lists, may increase fragmentation as well 

as collection strategies, such as mark-and-sweep. AlI collectors should have a strategy 

to combat memory fragmentation. Two strategies commonly used by collectors are 

compacting and copying. Let us first describe the compacting strategy followed by the 

copying strategy. 

Compacting normally consists of two major activities: moving objects and updat

ing their references. Collectors which implement a compacting strategy move objects 

to reduce fragmentation. They sIide live objects toward one end of the heap to create 

a large contiguous free area at the other end. In this process, they update all of the 

object 's references to refer to their new locations. 
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RC MS MC 
Pause Time v g b 
Throughput v g b 
Promptness e v v Meaning 
Completeness - + + (b)acI, (g)ood, (v)ery good, (e)xcellent 

Space Overhead g v g (-) not provided 1 (+) provided 
Unused Space b b e 
Fragmentation b b e 
Locality b b v 

Table 2.4 Points of Comparison for Mark-and-Compact 

Fragmentation may happen with many garbage collection algorithms. Compact

ing is often an efficient way of reducing fragmentation when using a mark-and-sweep 

collector [Ossia 04]. However, the collector usually visits ail the live objects twice dur

ing a collection; it passes through all the live objects to mark them, and then visits 

them again to update their references. This may result in an important performance 

overhead. 

Table 2.4 summarizes the impacts of the mark-and-compact collector for compar

ison purposes. Now, let us describe these impacts in more detai1. 

Fragmentation, Pause Time, and Throughput 

Collectors compact objects at the expense of longer pauses. Sorne authors [Darabash Oil; 

Ossia 04] propose a method of executing reference updating concurrently with the mark 

phase, thus eliminating a substantial portion of the pause times. Nevertheless, this 

method is detrimental to the throughput of the mutator and is most suitable when 

added to a mark-and-sweep garbage collectaI'. 

Space Overhead 

A mark-and-compact collector does not need a copy reserve to maintain survivors. 

This minimizes the space overhead. Nonetheless, the collector recursively traverses the 
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tree of objects during the mark phase. This recursive traversai may produce sorne space 

overhead (see Chapter 5). Mark-and-compact collectors often maintain a table of offsets 

to realize the relocation of objects [Jones 96), thus increasing memory pressure. 

Zorn [Zorn !JO] proposes to simplify updating moved objects by adding a level of 

indirection to ail object references. Object references refer to a table of object handles, 

which refer to the actual objects in the heap. When an object is moved, only its object 

handle shall be updated. This approach adds a notable space and performance overhead. 

Locality and Unused Space 

Mark-and-compact collectors almost completely eliminate the amount of memory 

unused by compacting. Furthermore, they preserve the locality of objects allocated 

closely in time. Compacting collectors do not reorder objects. Consequently, mutators 

accessing objects allocated together usually obtain a better overall performance. 

Completeness and Promptness 

A mark-and-compact collector reclaims garbage completely as it marks live ob

jects. It also recycles dead objects promptly, not with delays as reference counting 

does. 

2.6 Semi-Space 

Semi-space collectors [Cheney 70; Blackburn 02a] are the simplest copying collec

tors. Ali copying col!ectors must reserve sufficient memory to maintain al! the possible 

survivors of a collection. This reserve must be large enough to accommodate the worst 

case scenario, which happens when al! objects survive. At collection time, copying 

garbage collectors move ail live objects to the copy reserve. The memory collected is 

then recycled and fed back to a contiguous al1ocator. 

Copying COllectors are often called stop-and-copy col!ectors as they stop the exe
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RC MS MC SS 
Pause Time v g b b 
Throughput v g b g 
Promptness e v v v Meaning 
Completeness - + + + (b)ad, (g)ood, (v)ery good, (e)xcellent 

Space Overhead g v g b (-) not provided, (+) provided 

Unused Space b b e e 
Fragmentation b b e e 
Locality b b v v 

Table 2.5 Points of Comparison for Semi-Space 

cution of the mutator while copying. Objects are allocated until ail the usable space in 

the area has been exhausted. Program execution is then stopped and the heap is visited. 

Live objects are copied to the copy reserve as they are encountered during the traversaI. 

Program execution resumes only when the copy procedure is finished. Memory is then 

allocated from the area which holds the survivors, and the other free area becomes the 

copy reserve. 

Objects are copied as they are discovered during the traversai from the root set. 

While objects are copied to the copy reserve, forwarding pointers are left in their old 

locations. The abjects encountered later in the traversai, that refer to already copied 

abjects, can use the forwarding pointers to obtain the new locations of the copied 

objects. A simple test can establish whether a pointer refers to the old or the new 

region of memory. 

Table 2.5 summarizes the impacts of semi-space for comparison purposes. We 

describe now these impacts in more detail. 

Fragmentation and Locality 

Semi-Space collectors place live objects side by side into the copy reserve during 

copying. By doing so, they eliminate fragmentation and further improve spaciallocality. 

However, they reorder objects as they follow pointers breadth-first or depth-first instead 
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of in order of age. This reordering may engender a locality that does not fit the access 

pattern of the mutator, and consequently degrade the overall performance. We shall 

investigate this problem in Chapter 8. 

Space Overhead and Unused Space 

Semi-space collectors fail to minimize space overhead. They need a copy reserve 

that consumes half of the heap space. Collector designers propose new algorithms 

which uses the memory more efficiently. Generational and incremental collectors have 

emerged among other solutions. We present them in sections 2.7 and 2.8 respectively. 

There remains an unused space at the end of the usable memory when a collection is 

triggered. 

Throughput and Pause Time 

Semi-space collectors provide a good throughput when the heap is correctly sized. 

When the heap is too small, the collector collects too often, thus the throughput de

grades. When the heap is excessively large, its collection requires more time causing 

longer mutator pauses. Pauses, however, are generally long because every collection 

must trace ail the reachable objects. 

Completeness and Promptness 

During every collection, semi-space collectors copy ail live objects into the copy 

reserve. They feed back the memory holding ail dead objects to the allocator. Thus 

they reclaim ail garbage completely. After each collection the heap contains live objects 

only. However, it recycles dead objects less promptly than reference counting does. 

2.7 Generational 

Generational collectors divide the heap into regions independently collected. A 

region contains objects of similar age and is referred to as a generation. The youngest 
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generation, where newly created objects are recorded, is known as the nursery. The 

older generations, holding collection's survivors, are usually referred to as the mature 

space. 

Figure 2.2 presents a typical heap organization for a generational garbage collec

tion. It shows a heap holding three generations. Distinct systems may require more or 

fewer generations. All generations may have distinct sizes tUngar 84; Appel 89; Black

burn 02a]. 

Nursery Mamre 
<- - - - - - - - - -:;>-.q. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -> 

Free Spaee 

Alloealed Objects 

Generation 
Younger Older Boundaries 

Figure 2.2 Heap Layout for Generational GC 

The generational algorithm exploits the weak generational hypothesis, which as

serts that most object die young [Hayes 91]. On that account, the algorithm most 

frequently recycles the nursery. It collects less often the older spaces assuming that 

older objects live longer. By doing so, it usually reduces copying costs and improves 

performance. 

A generation is the unit of generational collection. At least one generation, always 

the nursery, is available for allocation after every collection. Sometimes two or more gen

erations are collected at once. In many virtual machines the Java method System.gc() 

launches a full collection which scavenges all the heap for garbage [IBI"! O:i; Gagnon O:ib]. 

Most generational collectors interact with a contiguous allocator that places new 

objects into the nursery. They mainly use the semi-space algorithm to collect the 

youngest generation and copy all nursery survivors into the copy reserve of the older 

generation. Generational collectors may use other algorithms to collect the mature 

space. 
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2.7.1 Write Barrier Mechanism 

In order to collect generations independently, generational collectors use a write 

barrier which keeps track of the inter-generational references. These references, while 

collecting, are used as roots. At every statement which stores a reference into an object 

field, the write barrier updates an inter-generational reference data structure, called 

the remembered set. The latter provides the collector all the references from objects 

in older generations to objects in younger generations. The references from younger to 

older objects or from and to same-aged objects are usually not remembered as younger 

objects are collected before older ones (see Figure 2.:3). 

Free Space 

Allocaled Objecls 

Inter-Generational 

Youngesl 
1 
1 Middle-Aged : Oldesl References 

Generation 1 Generation 1 Generation -... Remembered 

- - - - - - NOl Rcmembered 

Figure 2.3 Inter-Generational References 

The write barrier mechanism maintains remembered sets to avoid scanning the 

entire heap at collection time. During collection, the collector conservatively assumes 

that any remembered pointer refers to an object that the mutator can reach. Instead 

of tracing aH the heap to find reachable objects, the collector sequentially visits all the 

references used as roots for the generation being collected. 

Since the write barrier is called by the mutator after each reference is stored 

into the heap, this mechanism is very expensive. The global performance depends 

on the frequency of pointer stores, the number of stores remembered, and the ben

efits from independently scavenging regions. Altogether these tradeoffs improve per

formance because the pointer-tracking cost is offset by a much reduced copying cost 
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Blackburn decomposes the write barrier into two parts: the fast path and the slow 

path [Blackburn 02b]. The fast path is typically short. It determines if the collector 

needs to remember a pointer update. The slow path records the pointer only when 

necessary. The write barrier implementation depends on the remembered set scheme, 

and often uses many instructions [Holzle 93; \Vilson 89<1]. To reduce the write barrier 

cost, sorne collectors try to minimize the number of remembered pointer stores [Appel 89; 

Stefanovié 99bl. Other collectors use an imprecise remembered set to trade off scanning 

time for a simpler unconditional barrier [Azagury 98; V/ilson 89a]. 

2.7.1.1 Remembered Set 

Many garbage collection systems depend on partitioning objects and need to 

handle references between various partitions. Keeping track of such references in a 

remembered set eliminates the need to scan the originating partition to find them. 

Such a system may vary in precision: an imprecise system requires the collector to do 

more work while tracing. Generally, a more precise remembered set requires a more 

elaborate write barrier. 

We usually associate a remembered set with each generation tUngar 84]. Any 

pointer stored that creates a reference from an aider generation to a younger generation 

is recorded in the remembered set of the younger generation. At collection time, the 

remembered set of the collected generation is scanned. Each pointer in the remembered 

set is considered a root. Maintenance of this set is done by the mutator and by the 

collector when abjects are promoted [Jones 96; 'vVilson 92]. Since this approach has an 

unbounded space overhead [Hosking 92; Hertz ü5b], sorne studies have been done to 

provide alternatives. 

As described by Hosking, Moss, and Stefanovic in [Hosking 92], one general ap

proach is to keep all the tracked references in the remembered set. At collection time, 

the collector uses and rebuilds the remembered set, discarding any entries that do not 
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contain interesting pointers. Such entries can appear when a running system is im

precise about what is considered interesting, or when later changes override interesting 

pointers with uninteresting data. 

As mentioned by the authors, an imprecise system attempts to put too many 

entries into the remembered set rather than too few. The system must allow the collector 

to find all the interesting pointers. A naive implementation of this technique may lead 

to an important space overhead. In the worst case scenario, the remembered set size 

can grow to be as large as the heap itself [Sac:hindran 04]. One strategy they propose 

implements the remembered set as a circular hashtable using linear hashing. They filter 

all pointer stores to keep only the interesting roots in the remembered set. 

Advantages and Drawbacks 

The advantage is that this strategy eliminates duplicated entries and bounds and 

can reduce space overhead even if only a portion of the table is full. Another apparent 

advantage of remembered sets is their conciseness and accuracy. A drawback is that 

the system may have to do a circular search to find an empty slot. This linear search 

must be added to the filtering and hashing processes, which respectively eliminate un

interesting pointer stores and duplicates. The overall performance is markedly affected. 

However, remembered sets countervail this ftaw by allowing less root processing than 

other schemes do. 

2.7.1.2 Card Marking 

Many current systems use an efficient write barrier and maintain an imprecise 

remembered set. Card marking techniques maintain imprecise remembered sets [Aza

gury 98; lIo:sking 93; Wilson 89a]. Card marking partitions the heap into cards of equal 

size. Whenever the mutator modifies an object in a card, the card is marked as dirty. 

At collection time, the collector must scan all dirty cards to find the inter-generational 

pointers. This technique has the advantage of causing a fixed space overhead, unlike the 
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unbounded remembered set. However, it increases the tracing cost since the collector 

must trace ail the dirty cards in order to find the roots. 

Advantages and Drawbacks 

Ali the card marking mechanisms have the benefit of fixing and at times reducing 

the space overhead required for recording inter-generational pointers. By uncondition

ally setting the appropriate table's entry at each store in the heap, we also improve 

barrier time. We defer the cost of checking references until scavenge time and check 

each location only once for each scavenge. 

Systems need to scan more space in order to find the roots in the marked cards. 

Cards are unmarked only when they are collected. A marked card is scanned repeatedly. 

Depending of the size of the card, a lot of space is being traced needlessly thus increasing 

tracing cost. This strategy also constrains the allocator to place objects within the 

boundaries of a cardo We must ensure that the first word of a card is a header word 

which allows collection. There is unused space at the end of each cardo The object size 

is also bounded by the card size. 

2.7.2 Points of Comparison 

Table 2.fJ summarizes the effects of generational copying for comparison purposes. 

Now, let us describe them in more detai1. 

Completeness and Promptness 

Sorne systems collect the oldest generation with a mark-and-compact algorithm, 

others use mark-and-sweep, even reference counting is occasionally applied. Not ail 

these techniques ensure the completeness of the collectors. Designers must pay close 

attention to ensure that ail dead objects are reclaimed at sorne point in time. 

Older generations are visited less often than the nursery, and dead objects may 
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RC MS MC SS GC 
Pause Time v g b b v 
Throughput v g b g g 
Promptness e v v v b 
Completeness - + + + -

Space Overhead g v g b b 
Unused Space b b e e v 
Fragmentation b b e e g 
Locali ty b b v v g 

Meaning
 
(b)ad, (g)ood, (v)ery good, (e)xcellent
 

(-) not provided, (+) provided
 

Table 2.6 Points of Comparison for Generational Copying 

not be recycled promptly. In Chapter 5 we present a new technique to mark live ob

jects. In Chapter 7 we use this technique to provide promptness and completeness in a 

generational context. 

Fragmentation, Locality, and Unused Space 

Generational collectors minimize fragmentation and provide spacial locality as 

they place survivors side by side after the collection of a generation. They often collect 

the oldest generation using a non-moving algorithm, producing sorne fragmentation, 

reducing spacial locality, and increasing the amount of unused space. The amount of 

unused memory increases when generational collectors use card marking as the size of 

cards limits the size of objects allocated in the heap [Azag1lf}' 98; Hosking 93; Wil

son 89a]. 

Pause Time, Space Overhead, and Throughput 

Generational collectors reduce the average pause time. They do not collect ail of 

the heap. They reclaim younger objects regularly and older ones less regularly since 

older objects are presumed to live longer. There remains an unused space at the end 
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of the usable memory of each generation when a collection is performed. Properly 

tuned generational collectors provide good throughput. However, older objects survive 

into older generations. The latter are typically larger and eventually require collection. 

Collecting older generations worsens latency and throughput. Generational collectors 

do not ensure constant throughput and maximum pause times. 

2.8 IncrementaI 

Stop-the-world algorithms, as proposed by Cheney [Cheney 70j, completely hait 

execution of the mutator to perform a collection. Stopping the mutation guarantees 

that objects are not allocated or do not suddenly become unreachable while the col

lector is running. The fact that the mutator can perform no work while a collection is 

processing is a disadvantage. Within the context of interactive or real-time systems or 

when maintaining a large heap, such a pause may become intolerable. 

Incrementai garbage collectors are designed to reduce this disruption by interleav

ing their work with the activity of the mutator. Instead of scavenging the entire heap 

at once, collectors divide the heap into increments, which are usually equal-sized and 

independently collected. A possible heap shape for this scheme is shown in Figure 2.4. 

Increments are contiguously illustrated but this is not a requisite. 

Increment Copy Reserve 
<:----------> <----------> 

" ~ Free Space 
" 
" 
" A\localed übjecls 
" 
" 
" 

Figure 2.4 Heap Layout for Incrementai GC 

The number of increments may vary from one system to another. An increment 

is always the unit of collection. At least one increment is made available for allocation 

after each collection. Many increments can be collected and consequently freed at once. 

Unlike the generational collection, the incrementa! algorithm does not constrain 
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RC MS MC SS GC IC 
Pause Time v g b b v v 
Throughput v g b g g v 
Promptness e v v v b g 
Completeness - + + + - -

Space Overhead g v g b b v 
Unused Space b b e e v g 
Fragmentation b b e e g v 
Locality b b v v g g 

Meaning
 
(b)ad, (g)ood, (v)ery good, (e)xcellent
 

(-) Ilot provided, (+) provided
 

Table 2.7 Points of Comparison for IncrementaI Copying 

the allocator to place new objects within a particular increment. Objects can be al

located into any increment. Collectors often use a copying strategy to scavenge each 

increment [Bishop 75; Hudsol1 92; iVlosi:i 96; 1":[ul1ro 99; Blackburn 02a]. Survivors are 

copied into another increment. All increments are repeatedly filled and collected using 

the same algorithm. IncrementaI collectors, like generational ones, need to keep track 

of pointers between increments in order to reduce tracing costs. A remembered set is 

maintained for each increment while processing. 

Table 2.7 surveys the impacts of incremental copying for comparison purposes. 

We describe them now in more detail. 

Completeness and Promptness 

IncrementaI collectors have a disadvantage: they do not ensure the collection of 

cyclic structures. The incremental copying collector proposed in Chapter 4 reclaims 

garbage completely. Since each increment is collected in turn, dead objects are not 

always recycled promptly. The incremental collector, as depicted above, visits each 

increment as often as the other increments. Thus, it may reclaim garbage more quickly 

than generational collectors. In Chapter 5 we present a new technique to mark live 
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objects.In Chapter 4 we use this technique to provide promptness and completeness in 

an incremental context. 

Fragmentation, Locality, and Unused Space 

IncrementaI collectors minimize fragmentation and provide spaciallocality as they 

place survivors of a collection side by side. There is some unused space at the end of 

each increment. This unused space may increase when incremental collectors use a card 

marking mechanism. 

Pause Time, Space Overhead, and Throughput 

IncrementaI collectors reduce the average pause time as they partly collect the 

heap. They need to reserve less space than semi-space collectors to maintain survivors 

and thus reduce space overhead. Finally, they usually provide a very good throughput 

by collecting small increments at once. 

2.9 Conclusion 

In this chapter we described concepts of such as a mutator, a memory manager, 

an allocator, and a collector. We further presented the concepts of roots, garbage, 

and live objects. We presented points of comparison often used in the literature on 

garbage collection. Some popular garbage collection algorithms have been detailed and 

compared. Finally, some related constructs as the write barrier, the remembered set, 

and card marking have also been presented. 



Chapter III 

OLDER-FIRST ALGORITHM 

Bishop's work [Bishop 75] introduced the idea of collecting memory incrementally. 

He describes a technique to divide the memory into many areas and uses remembered 

sets to track references between them. His collector is able to collect large structures 

by migrating objects to areas containing references to these objects and by imposing no 

bounds on the sizes of the areas. It then becomes straightforward to collect a structure 

isolated within a single area or even cyclic garbage structures (see Chapter 5). 

The train algorithm, as first proposed by Hudson and Moss [Hudson 92], also 

implements an incremental collection. It addresses a weakness found in generational 

collection algorithms which results in long and disruptive pauses when collecting the 

oldest generation. The basic idea is to divide the oldest generation into equal-sized 

increments and collect them independently. Increments, also called cars, are logically 

linked into diverse trains, which symbolize lists of cars. Trains are then linearly ordered 

and collected in turn. The order of the trains refiects the moment in time of their 

creation from oldest to youngest. Cars, added to a given train as objects, either leave 

or join the train. 

The interest in this technique l'esides in its capacity to bound the size of the train 

being collected at any one step. This capacity gives the authors the hope of restraining 

pause times. The ability to collect large and cyclic garbage structures is guaranteed 

through conscious placement policies that retain a proper logical ordering of the trains. 
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Seligmann and Grarup have implemented and studied this algorithm [8c!igmanll 951. 
Extensions have also been proposed for persistent [Moss 96; Munro 99] and distributed 

[Hudson 97] environments. 

Other collectors also use incremental algorithms. The older-first collectors [Ste

fnnovié 99(1; Stefanovic 02] segregate objects by age into a number of equal-sized windows 

(or increments) which they collect one by one from the older to the younger objects. 

Older-first collectors avoid copying the youngest objects, which have not yet had enough 

time to die. Many implementations of the older-first algorithm have been proposed over 

the years. In this chapter we carefully examine this incremental algorithm. 

3.1 Basic Implementation 

Figure :U presents the possible shape of a heap worked on using an older-first 

algorithm. It helps to visualize a first-in-first-out circular queue of windows. The first 

window containing the older objects is next in line to be collected. Collections always 

happen at the head of the queue when objects consume ail usable memory excluding 

the unusable copy reserve. 

Bcforc [heWindow Copy Reserve 
Collection ~---------> Free Space 

I~.nlmn~.n::----~ :.m :1 Allocated abjects 
l " " ',~ J 
1 1. .', " './ 1 

l " " " 1
 
l " " " 1
 

o NcXl Collec«d abjects 
1 1~ " " J 1... ------ - - - -' .. - - - - - - - - - - -' ... - -..;; - ------ - -' ... - - - - - - - - - - -' o NCXI Allocalcd Memory
aides, Youngcst 

Arlcr lheCopy Reserve 
4---------> Collection 

1:'::~'··j·mT--'·":·I'::'···'~1
: ,/ ',::: 1 :: . :: : 
, . ',' '. '1 ' 
, " " " 1 
.: -- -- .'..'. .:'.::.. +. _ ----- _ .' .. _--- - - - - - - .' 

Youngcsl Oldcst 
Surviyo~ 

Figure 3.1 Heap Layout of the Older-First Algorithm 

The leading window becomes the trailing one after its collection, the second win

dow becomes the next to be collected, and so on. Windows are collected in circular 
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fashion. The tail always contains new allocated objects and survivors, which are equal

aged in the older-first algorithm. In [Blackburn 02a] the algorithm is named older-first 

mix by the authors as survivors and newly allocated objects are mixed together in 

memory. 

3.1.1 Pointer-Tracking Cost 

Collecting less than the whole heap requires tracking pointers into the collected 

region. The older-first collector uses write barrier mechanisms to compute the root set 

of each window. This usually results in much higher pointer-tracking costs than gen

erational algorithms. The latter divide the heap into a number of generations. This 

number is usually less than the number of windows provided by older-first collectors. 

More boundaries make the write barrier remember more pointers, consequently increas

ing pointer-tracking costs. 

Stefanovic, McKinley, and Moss [Stefanovié 9gb] have found that most pointer 

stores are among the youngest objects as weil as among the objects they point to. 

Collecting regions outside the youngest objects causes more pointer tracking. They 

show that older-first collectors give objects more time to die. They do not collect the 

youngest objects which clearly are still alive. This results in much lower copying costs. 

The authors state that older-first algorithms usually have a total cost lower than the 

total cost of generational algorithms. The total cost refers to combined costs of the 

pointer tracking and copying collection phases. 

3.1.2 Computing the Root Set 

Remembered set strategies can significantly amplify space overhead. Older-first 

collectors generally record more pointers than generational collectors. If duplicated en

tries are not rejected, the size of the remembered sets may become problematic. This 

space overhead may even lead to a system failure. For example, the mark-copy algo

rithm have a space overhead representing up to 25% of the maximum live memory size 
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RC MS MC SS GC lC OF 
Pause Time v g b b v v v 
Throughput v g b g g v v 
Promptness e v v v b g g 
Completeness - + + + - - -
Space Overhead g v g b b v v 
Unused Space b b e e v g g 
Fragmentation b b e e g v v 
Locality b b v v g g g 

Meaning 
(b)ad, (g)ood, (v)ery good, (e)xcellent 

(-) not provided, (+) provided 

Table 3.1 Points of Comparison for Older-First Copying 

[Sachind1'8n (n]. Although remembered sets increase space overhead, designers use this 

technique for gaining time, as earlier experience suggests [Hosking 92; Blackburn 02a]. 

Card marking mechanisms have the benefit of l'educing and fixing the root set 

size, thus the space overhead as weIl. Collectors often mark cards unconditionally to 

reduce time overhead. Since the older-first algorithm increases the number of pointers 

tracked, it pays off to simplify the write barrier. The barrier cost is reduced by using 

card marking. The imprecision of this mechanism increases tracing costs. 

3.2 Points of Comparison 

Table :1.1 surveys the impacts of older-first copying for comparison purposes. We 

describe them now in more detail. 

Older-first algorithms provide aIl the characteristics of incremental garbage col

lection. They have short and constant pause times, reduced copying costs, less space 

overhead, fragmentation, and locality. However, older-first collectors visit the whole 

heap more regularly than generational collectors. This may decrease its locality in the 

cache and increase its paging activity [Stefanovié 9gb]. 
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Older-first collectors improve responsiveness by reducing average pause times. 

The problem is that they do not provide completeness, causing memory leaks when 

cyclic and large garbage structures infest the heap. In Chapter 5 we present a technique 

to recycle garbage completely in a partitioned heap. 

3.3 Conclusion 

In this chapter we presented a basic implementation of the older-first algorithm. 

We explained how the algorithm negatively affects pointer-tracking costs as it col!ects 

less than the whole heap. We discussed the strategies (remembered set and card mark

ing) available for computing the root set. We also briefly discussed the points of com

paI'ison for this algorithm. 



Chapter IV 

IMPROVING CARD MARKING USING BOUNDED FRAMES 

In this section we present a new implementation of the older-first algorithm which 

uses a bounded frame marking scheme as the remembered set. We first introduce the 

bidirectional object layout exploited in our algorithm. We then present our remembered 

set approach. Next, we talk about the necessity to use the bidirectional object layout 

with our approach. We then discuss the efficiency of our write barrier, which maintains 

the remembered set. Finally, we explore existing remembered set approaches, their 

advantages and disadvantages, and the interests and drawbacks of our implementation. 

4.1 Traditional and Bidirectional Object Layouts 

Many studies have demonstrated that the layout of an object exerts an influence 

on its environment. Among other consequences, it can affect the execution time as 

weil as the algorithm design. For instance, the object layout has been investigated as a 

means to provide efficient access to instance data and dispatch information in languages 

supporting multiple inheritance (most specifically C++) [lvIyers 9-5; Pugh 90]. Someone 

else has proposed a garbage collector which requires grouping pointers at the head of 

structures [Bartlett 88]. Gagnon has introduced a new object layout that optimizes the 

placement of reference fields to allow efficient garbage collection tracing [Gl'I,gnon 02a]. 

The most exploited object layout is the traditionallayout. However, the bounded frame 

marking method that we present next uses the bidirectional layout. Then we present 

both object layouts: traditional and bidirectional. 
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In the traditional layout the fields are laid out consecutively after the object 

header, starting with super-class fields then subclass fields, as shown in Figure 4.1. 
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Addresses r 
Reference Field 
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Fields of 

Non-Reference Field 

Reference Field 
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c1ass A 

Objecl Object Header 
Reference ..
 

Figure 4.1 Traditional Object Layout 

When tracing such an object, the garbage collector must access the object's class 

information to obtain the offsets of its reference fields, then access the superclass infor

mation to obtain the offsets of its reference fields, and so on. Since this process must 

be repeated for each traced object, it becomes quite expensive [Gagnon 038.]. 

The bidirectional object layout was first introduced in SableVM [Gagnon œb; 

Gagnon 02a; Gagnon 03;),], a research framework for efficient execution of Java bytecode. 

This layout groups aB reference fields consecutively in front of the object header and 

aB non-reference fields toBowing the object header. The garbage collector is then freed 

of the burden of accessing the object's class information in order to obtain the offsets 

of its reference fields. In array instances, elements are placed in front or after the anay 

instance header, depending on whether the element is a reference or a non-reference 

type. Figure 4.2 shows the bidirectionallayout of an abject. 

With bidirectionallayout, an object can be reached by a tracing collector through 

a reference that points to the object header or through the starting point of that object. 
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Figure 4.2 Bidirectional Object Layout 

In the second case, the starting point might be either a reference field or the object 

header itself. At this point, the collector determines whether the initial ward is a 

reference or a header word. If the last bit of the word equals 1, then the word is a 

header word. If it is zero, then the word is a reference since al! references are aligned in 

memory. 

While scanning the heap, the collector only needs to read words consecutively. 

It then checks the last bit of each ward. When that bit is set to zero, the reference is 

traced. When it is set to 1 (i.e. object header), the end offset of the object is computed 

in order to find the starting point of the next object. 

4.2 Bounded Frame Marking Scheme 

Our older-first garbage collector exploits the bidirectional object layout to im

prove efficiency and precision when remembering inter-window references. We propose 

a method that combines the remembered set and card marking mechanism in a new 

way. 

In our implementation, the windows are subdivided into many cards as proposed 
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by the card marking mechanism. But, the new idea behind our bounded frame marking 

technique is to keep two pointers for each card in a remembered set. This pair of pointers 

represents the first and last remembered pointers for a cardo We use the addresses of 

each pointer to order them from first to last. The first pointer has the lowest address 

in a card and the last has the highest. Figure 4.3 represents our improved older-first 

garbage collector implementing the bounded frame marking mechanism. 

Window Card 
<- - - - - - - - - -> 

Free Space 
1 .1' ,1. / , .1, 1:0----0- ---,- ---0- ~ ---0- --. -0- --:---Œ---:~~- --:~D-:-0- --:~D- ---0
l ,1. 

~ __ ::': _:: __~~~: 
" / / •.

:__ 1~_~ 
,1. . 

~_._ J~ _~ 
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~ 
Allocaled Objecls 

~ Bounded Frame 

lÉ -gl Pair Of Pointers 
'" " 
-> First & LaSl 

Pointers 

Remembered set 

for lhe firsl window 

Figure 4.3 Bounded Frame Marking Mechanism 

As you can deduce when observing Figure 4.3, each window has its own remem

bered set. The first window's remembered set is presented in the figure. This remem

bered set contains many pairs of pointers, one for each card in the heap. Each pair keeps 

track of the first and last pointers in the corresponding card that potentially points into 

the first window. 

At collection time, the collector traces each card from the first to the last re

membered incoming pointers for the window being collected. These pointers determine 

the region that must be traced into the cardo We cali this region a frame. Since the 

first and last pointers always belong to the card, we say that the frame is bounded 

by this cardo When the last pointer is lower in value than the first one, the card is 

considered unmarked. Then, our bounded frame marking technique combines the card 

and remembered set mechanism by using cards to bound frames and pointers to delimit 

frames. 
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4.3 Bidirectional Layout Dependency 

Our mechanism depends on the bidirectional object layout. Remember that the 

bidirectional object layout lays out all the references in front of the object header while 

the traditionallayout spread them aftel' the object header with the non-reference fields. 

We should also remember that our mechanism maintains, for each window, a 

remembered set that keeps track of incoming pointers. To be more precise, what we save 

in the remembered set is the address of the first and last incoming pointers. Figure 4A 

shows this facto 

Free Space 

Allocated Objects 

li 1, ," Il .,1 1 1 ~~o----0---rr- ---~---O-, / Il ---0- --'-'~O- ---,-- -'~~-1, ---'~O- --0- ---0---0- Bounded Frame 1; ., 1. 1 

lê -g1Pair Of Pointers~ C J~ ' ~ _:r:~ ~:__'__ ,J~ _'~ _~/_~ _~ __ J '" ., 
-----.... Address Of Roots 

- - • Roots 

Figure 4.4 First and Last Incoming Pointers for a Bounded Frame 

When the collector traces a frame to find the roots of l'eacheable objects in the 

window being collected, it starts at the address of the first remembered pointer and 

stops at the address of the last one. While scanning the frame, the collector needs only 

to read words consecutively and check the last bit of each word as previously explained. 

Ali the reference fields between the first and last remembered pointers are traced, 

In Figure 4.4, the collector finds three roots in the first frame and one in the second. 

\iVhen a header word is found, we use it to skip all subsequent non-reference fields by 

computing the starting point of the next object. This starting point always refers to a 

reference field or a header word. 
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With the bidirectional object layout we are sure that the word after the first 

remembered pointer is either a reference field or a header word. But, the problem 

with the traditional object layout is that it cannot ensure what comes before and after 

the first remembered pointer. Thus, the collector cannot determine if the subsequent 

word is a reference field, a non-reference field, or a header word. This limitation of the 

traditional object layout does not allow the collector to scan the memory frames. So 

our method is dependent on the bidirectional object layout. 

4.4 Write Barrier Efficiency 

The older-first algorithm is incremental. So, to collect each increment indepen

dently we have no choice but to track the inter-window pointers. At collection time, we 

use these tracked references as roots to find the reachable objects. The write barrier is 

the collector's element which maintains this set of references. It is called by the mutator 

each time a reference is stored in the heap. Nonetheless, it is also called by the collector 

each time an object referenced by another object considered as a root is moved in the 

heap. 

The number of calls to the write barrier is quite significant. Furthermore, older

first collectors usually track many more pointers [Sldanovié: 9gb], thus, the importance 

of examining the efficiency of this component. It has a major impact on overall per

formance. This realization has guided us in the conception of our older-first garbage 

collector. Figure 4.5 shows the pseudocode for our write barrier. 

To understand the pseudocode, one must have a good understanding of the 

bounded frame marking mechanism previously presented. Remember that each win

dow maintains its own remembered set. This set allows the collector to find ail the 

roots for the window being collected. For each window, we have a number of frames 

equal to the number of cards in the heap. This fact is iIIustrated in Figure 4.G. 

When an object field is updated, the write barrier is called. While in the write 

barrier, we first verify if the value stored in the field is indeed a reference to Mother 
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_svmCwrite_barrier (heap, slot) 

{ 

IF the abject referenced is in the heap THEN 

compute the index of the frame to update
 

Il index_frame = ((slot - heap->start) 1heap->frame_size)
 

compute the index of the window to update
 

Il index_window = ((*slot - heap->start) 1heap->window_size)
 

access the frame to update
 

Il frame = heap->windows [index_window] . frames [index_frame]
 

IF slot < frame->start THEN
 
frame->start = slot;
 

END TF
 

IF slot > frame->end THEN
 

frame->end = slot;
 

END IF
 

END IF 

Figure 4.5 Write Barrier Pseudocode 
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Figure 4.6 Remembered Sets for the Bounded Frame Marking Method 
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object in the heap. In that case, we compute the index of the bounded frame associated 

with the card that contains the field being updated. Atler that, we compute the index 

of the window that contains the object referenced by the field being updated. These 

indexes are represented in Figure 4.6. Then, we access the remembered set to obtain 

the pair of pointers that delimits this bounded frame. At that point, we update the 

first and/or the last pointers if necessary. AlI these operations are executed in constant 

time. So the execution time of our write barrier is very fast. 

4.5 Comparison with Card Marking 

Our new bounded frame marking scheme provides aIl the characteristics of the 

older-first garbage collection: short and constant pause times, reduced copying costs, 

less space overhead and fragmentation, and locality. But, it has some advantages and 

few drawbacks over the card marking mechanism. 

One of the most signicant advantages of our method is to reduce the tracing costs 

of garbage collection. As pointed out by Jones and others in [Jones 96; Hosking 92] 

respectively, tracing is often one of the most expensive steps of garbage collection. 

Remember that with a card marking system whenever the mutator modifies an object 

reference field in a card, it caUs the write barrier to mark the card as modified. At 

collection time, the collector scans all the marked cards to find pointers that point into 

the window being collected. These cards are unmarked only when they are collected. 

So, a marked card is scanned repeatedly. Depending of the size of the card, a lot of 

space is being traced uselessly hence increasing the tracing cost. 

Our method is more precise when marking a cardo If only one word is modified in 

a card, the corresponding frame will be bounded by this word. So, the collector will scan 

only one word at collection time instead of the entire cardo This situation is presented 

in Figure 4.4 (the first and last pointers contain the same address). The worst case 

scenario happens when the first and last words of a card are modified and represent 

some references. Then the entire card is traced. But even in such a case our technique 
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is still as efficient as card marking. 

Another advantage of our mechanism is to reduce the amount of unused heap 

space. With the card marking system, each marked card is scanned entirely at collection 

time. In addition to increasing the tracing cost, this strategy constrains the allocator to 

place an object inside the boundaries of a cardo An object cannot spread across a card 

boundary since we must ensure, in order to allow the collection, that the first word of 

a card is a header word (or a reference word if the bidirectional object layout is used). 

Thus there is some wasted space at the end of each card of the heap. 

Since tracing does not necessarily start at the beginning of a card, our method 

allows to spread objects over many cards, unlike the card marking system. In fact, it 

allows an object spreading over many cards to be partially traced, as shown in Figure 4.7. 
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Figure 4.7 A Partially Traced Object 

The collector traces only the parts of the object that potentially contain some 

source pointers. But, what we want to expose here is the fact that each card is entirely 

allocated. The only exception is the last card of each window, the unit of collection of 

the older-first garbage collector. We cannot spread an object over a window since the 

collector would corrupt the object at collection time. This limitation is not addressed 

within our system. So, there is still some unused space but only at the end of each 

window. 

This discussion introduces the next advantage of our technique; the object size 

is no longer limited by the size of a cardo As mentionned before, the traditional card 
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marking system does not allow an object to spread over many cards. Thus the size of an 

object is limited by the size of a cardo Our bounded frame marking scheme eliminates 

this constraint by allowing an object to coyer many cards. So, the object size and the 

card size are no longer dependent. Nevertheless, the object size is still limited by the 

size of a window, a constraint introduced by older-first algorithms. 

These advantages come with at least two disadvantages. First, instead of using one 

bit by card as the card marking mechanism does, we use two words by card representing 

the frame's first and last pointers. Also, our method causes a space overhead that 

increases in a quadratic manner. Suppose the number of cards is n and the number 

of regions collected independently is m. In that case, the collector maintains (n * m) 

frames because each region has its own remembered set which contains a frame for each 

cardo 

The second point concerns write barrier costs. As explained before, our technique 

forces the write barrier to compare the first and last pointers with the pointer presently 

being stored. The card maI'king system does not need to make these comparisons since 

it only updates the bit no matter the exact address of the pointer being stored. On 

the other hand, it needs to manipulate the bit vector. This implies that the needed 

bit's position must be computed, this bit must be then reached, and finally updated. 

Depending on the specifie processor, 3 to 6 instructions are needed to realize these 

operations [Hülzle 9;3; Wilson 89a]. Thus the overhead resulting from our comparisons 

is compensated by these bit manipulations. 

4.6 Comparison with Remembered Set 

Our new bounded frame marking method combines the card marking and remem

bered set techniques. This combination provides our system with at least one advantage 

over systems implementing only the remembered set mechanism. Our method reduces 

and fixes space overhead. Remember that the basic remembered set strategy uses one 

word for each store into the heap that represents a pointer from a younger to an older 
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window. This means that the size of a window's remembered set can be proportional 

to the number of references in the heap. If the strategy implemented does not track the 

duplicated entries (i.e. many stores into the same location), the size of the remembered 

set can grow significantly. However, the remembered set grows in a linear manner which 

is better than our earlier-stated quadratic complexity. 

In our system, instead of using one word for each significant store into the heap, 

we use two bytes by cardo Thus, we provide our system with a fixed space overhead 

that is potentially smaller than the one provided by the basic remembered set scheme. 

On the other hand, our method is less precise when tracing. We must scan more space 

to find the source references in a frame. Thus, our tracing cost is higher. Nevertheless, 

this drawback is less important for our method than for the card marking scheme. 

4.7 Conclusion 

In this chapter we introduced a new method that uses bounded frame to reduce the 

tracing costs of traditional card marking schemes. We described the bidirectional object 

layout which is exploited in our scheme. We discussed the need for an efficient write 

barrier mecanism, and explained how this need has guided us in the conception of our 

method. Finally, we compared our bounded frame marking technique with traditional 

remembered set and card marking strategies. Empirical eva1uations of our method is 

given in Chapter 10. 



Chapter V 

DEALING WITH CYCLES, LARGE GARBAGE STRUCTURES,
 

AND FLOATING GARBAGE
 

The incremental algorithm proposes to divide the heap into fixed-sized regions 

and incrementally collect each region in turn, bounding the amount of data copied at 

each collection step. The problem is that sorne structures may never be collapsed into 

the boundaries of a region, causing either multiple collections of the same garbage or 

memory leaks. The amount of garbage structures may represent up to 80 percent of ail 

dead objects with certain applications [Adjih 96]. 

In this chapter, we closely examine sorne garbage structures, and present how col

lectors actually handle them. Then, we present a technique which provides completeness 

by marking live objects without space overhead. 

5.1 Garbage Structures 

Incrementai collections as depicted in Chapter 3 fail when dealing with garbage 

spreading over regions not collected at the same time. Large garbage structures, cycles, 

and floating garbage stand as examples, let us introduce them now. 

5.1.1 Large Garbage Structures 

As an example, suppose we have a single-linked list of objects which overlay many 

increments. The list is placed in such a way that its taïl is first colleeted, then cornes 
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the element which precedes the tail, and so on backtraking through the list until the 

collection cornes upon the head. Figure 5.1 presents the idea. In this illustration, 

increments are collected from left to right. Reachable objects are copied into the empty 

increment while collecting. 

Free Space 

Allocated übjects 

D List's Elements 

Collections 

First... 

Seventh... 

Thirteenth... 

Thirty-Seventh ... 

Figure 5.1 A Large Garbage Structure Overlaying many Increments 

One root maintains the list away from collection. As Figure 5.1 shows, freeing 

the entire list may request collecting forty-three increments if only the root is nullified. 

The linked-list's elements are copied several times causing a negative effect on overall 

performance. The result is not a memory leak. Nonetheless, this temporary memory 

shortage may lead to premature out-of-memory errors. 
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5.1.2 Cycles 

Cyc!ic structures may spread over many increments, and may never be freed if 

they cannot be collapsed into a single region. Look at the circularly-linked-list pictured 

in Figure 5.2. 

Free Space 

Allocated Objects 

D Lisl'S Elements 

Figure 5.2 A Cyc!ic Structure Overlaying many Increments 

If only the root which maintains the list away from collection is nullified, freeing 

the entire Iist becomes impossible. This memory leak occurs because each element is 

still reachable from the remembered set and thus can not be collected. By copying 

elements over and over again, cyclic structures negatively affect overall performance. 

Furthermore, this memory leak may lead to premature out-of-memory errors. 

5.1.3 Floating Garbage 

Garbage collectors are conservative when assuming that ail objects in the remem

bered set are alive. However, objects may die after they have been inserted into the 

remembered set but before being callected. When the dead abjects in the remembered 

set refer to other dead objects in the collected region, those dead abjects are copied by 

the collectoI. They are called floating garbage, or simply floats [Hansen 02]. Cycles and 

large garbage structures may generate a lot of floats. 

5.2 Providing Completeness 

Collectors often mark the object graph starting from the root set, and conserve 

only marked abjects while collecting. By marking objects, collectors ensure that ail 
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garbage is detected. A mark stack is commonly used to avoid procedural recursions, 

this adds extra space and time overhead while marking. In the worst case, such a 

strategy may generate a space overhead proportional to the number of object references 

populating the heap. 

Many systems have severe heap restrictions combined with complex functional 

requirements, which consume memory as a time-space trade-off. Embedded systems 

stand as an example; mark stacks may result in a premature out-of-memory error with 

systems severely limited in space. So, it is clearly undesirable to have garbage collectors 

consume too much memory while marking. 

5.3 Marking without Space Overhead 

We introduce here a technique to mark objects without space overhead. Figure 5.;3 

illustrates the method we used. Upon closer examination, one can see that we perform 

a depth-first policy. 

We can imagine a forest which contains many trees. We use the root set to find 

these trees. Starting at the root, we go deeper and deeper down the first branch of the 

tree until we bump into a leaf, which is an object either without a handy reference or 

which is already marked. We consider marked objects as leaves to ensure the complete

ness of our algorithm which would loop over cyclic structures otherwise. When a leaf 

is encountered, we go back up to recurse into the next branch, and so on until the tree 

is completely marked. By processing the root set entirely, we thus mark ail reachable 

objects. 

Step a) in Figure 5.:) presents the starting point of our algorithm. As you can see, 

we maintain two pointers while marking: a parent which first points to the root of the 

tree, and a child which points to the first reference field of the object reachable from 

the root. \Ve use these pointers to repair each branch we alter while traversing the tree. 
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Figure 5.3 Mark without Space Overhead 

5.3.1 Depth-First Marking Trace 

Now, let us describe the process in detail using the example illustrated in Fig

ure 0.3. Figure 0.4 reveals the pseudocode of our marking procedure, which receives a 

root as parameter. Our algorithm first checks if the root either is null or refers to an 

object already marked, in both cases we return immediately. Otherwise, the object is 

marked and we set the parent and child pointers as illustrated in step a) of our example. 

The remaining steps take place in the core loap of our procedure. 

Our algorithm loops while there is a child to visit, or while the parent is not the 

root. In our example, the root refers to an object which has potentially two children, 

so we enter the loop. In the loop, we initially verify if the child pointer indirectly refers 
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IF the raot is null or the abject is marked THEN
 

retum
 

ELSE 

mark the object 

refer to the root using the parent pointer 

refer to the first child of the abject using the child pointer 

WHILE there is a child OR the parent is not the root LOOP 

IF lhere is a child THEN 

IF the chiId is not marked THEN 

mark the child 

IF the child has another child THEN 

go down the lree
 

END IF
 

ENDIF
 

ELSE
 

go back up the tree 

END IF 

refer to the next child of the parent using the child pointer 

ENDWHILE
 

END IF
 

Figure 5.4 Pseudocode for the Marking Procedure 

to an object. This is the case, so we check if this object is already marked. As you can 

see in step a), the object is not marked. Therefore, we mark the object, and we go on 

down since this object has a child. In order to go back up later, we must remember 

where we came from when we go down. Normally, it is this information that yields space 

overhead. In our scheme, we use the heap space to stock this information, avoiding the 

space overhead. 

Figure 5.5 presents what happens when we go down. We first remember the child 

pointer in a swap variable (see a.l). Next, we set the child pointer to the first reference 

field of the object indirectly referenced by the child pointer itself (see a.2). Then, we 

use the reference field of the abject we leave behind ta remember where we need to go 

when we will go back up later (see a.3). Finally, we set the parent equal to the swap 

variable. All these operations occur between steps a) and b), and as well each time we 

go down into the tree. 
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'swap =parent; parent =swap; 

Figure 5.5 Coing Down while Marking 

Ali the following actions happen between steps b) and c). Starting from step b), 

we use the child pointer to access the next object, which is not marked. We mark it, 

but we do not go down since this object does not have a child. So, we move the child 

pointer over to the next reference field. Again, we use the child pointer to access the 

next object, which is also not marked. We mark it, but now we go down since this 

object has potentially two children. However, the first child is null, so we skip it. We 

are now at step c). 

In step c), we bump into a leaf which is an object already marked. Since there 

are no more children, we have to go back up. Figure 5.6 illustrates what happens when 

we go back up. We first set the swap variable equal to the reference field pointed to by 

the parent pointer (see c.l). Next, we set this reference field equal to the child pointer 

(see c.2). Then, we set the child pointer equal to the parent (see c.3). Finally, we set 

the parent equal to the swap variable, and we move the child pointer over to the next 
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consecutive reference field. Ali these operations occur between steps c) and d), and each 

time we go up the tree. 

IJ L...OL\~ 
c)	 c.l c.2 

swap = *parenl; *parent =chi Id; 

Il. swap 

Iill parent 

Iiil	 chi Id 

~	 object 
header 

1 marked 

object 

c.3 d) 
child =parent; parent = swap; 

Figure 5.6 Coing Up while Marking 

In step d), the child pointer reaches an object header. We then must go up since 

no other child exists. At that point, the parent pointer refers to the root, and the child 

pointer refers to a nullified refcrcncc field. Thus, we move the child pointer over to the 

next word, which is also an object header. This last move brings us to step e), we then 

reach the end of the marking process. 

5.4 Conclusion 

In this chapter we introduced garbage structures such as cycles, large structrues, 

and fioats. We discussed the space overhead generated by col!ectors which use mark 
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stacks to provide completeness. We proposed a technique to mark objects and provide 

completeness without space overhead. Finally, we presented a complete trace of our 

method using a small example. 



Chapter VI 

DEALING WITH LARGE üBJECTS 

Collector designers make assumptions about the lifetime of objects, and they 

aspire to improve collection algorithms by tailoring them to these assumptions. In 

[Inoue 06], the authors define the lifetime of an object in garbage collection studies as 

the sum of the sizes of all objects allocated between the given object's allocation and 

death. They express its lifetime in bytes or words. 

Most garbage collectors make relatively coarse-grained predictions (e.g., short

lived versus long-lived) and rely on general heuristics to predict the lifetime of objects 

[Liebennan 8:~; Han~on 90]. For instance, older-first collectors copy older objects first, 

and generational collectors copy the younger generation more often than the older one. 

Other systems implement more precise predictors which maJœ their predictions based 

on application-specifie training rather than application-independent heuristics [[noue 03; 

Inouc 06]. 

Accurately predicting the lifetimes of objects can effectively improve memory 

management systems, but wrong assumptions may result in pOOl' performances. A 

predictor is accurate when a great fraction of its predictions are correct, and it is precise 

when the granularity of its predictions becomes equal to a small unit of allocation. A 

fully precise predictor has a granularity of predictions equal to the smallest possible 

unit of allocation. UsuaJIy, predictors must trade off between accuracy and precision, 

because increasing precision often leads to less accuracy. 
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Many policies have been used to prophesize the lifetime of objects. For instance, 

many copying garbage colleetors assume that large objects are long-lived. On that 

account, they handle large objects specially in a separate space to reduce the costs of 

managing them. Many implementations employ this strategy [Caudill 86; IIudson 91; 

n.eppy 9:3], sorne of which do not collect the large objects at all, and sorne of which 

collect them using diverse algorithms. 

In this chapter, we describe our large object policy that regroups large objects in 

memory and makes assumptions about their lifetime. Large object segregation implies 

lack of promptness caused by delays in the collection of dead objects. In Section 6.2, we 

present a solution to that problem. Finally, we introduce a study that provides sorne 

helpful tips for managing large object spaces. 

6.1 Large übject Policies 

Predictors often use the characteristics of an object to predict its lifetime. Usually, 

object size is a good property to consider while predicting. Many systems segregate 

small and large objects into the heap, and employ distinct policies to manage them 

tUngar 88; Hudson 92; Baker 92; Lirn 98]. By isolating large objects into a specifie area, 

we can handle them more efficiently, and studies show that this pays off [Hicks 98]. 

We follow the assumption that large objects are generally long-lived, and so we 

suggest COllecting them less often than smail objects. On that account, our older-first 

collector allocates small objects at the beginning of the heap, and large ones at the end. 

We maintain a reference pointer to the first word of the large object space. Initially, 

no large objects exist, so the pointer refers to the end of the heap. When the mutator 

requests a large block of memory, the pointer moves over a lower address. Figure 6.1 

illustrates the heap layout we propose for our large object policy. 

The large object space is always aligned with the boundary of a window, and it 

may spread over one or more windows. When the mutator creates a large object, we 

widen the large object space if necessary, and narrow the small object space accordingly. 
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Figure 6.1 Heap Layout for Large abjects Policy 

We always keep at least one window free as a copy reserve for our small object space. 

Such a reserve is needless for the large object space, we collect it only when the mutator 

exhausts the heap. In that case, we enlarge the heap and launch a full collection, 

possibly extending both the small and large object spaces. During a full collection we 

compact small objects at the beginning of the heap, and large objects at the end. 

6.2 Improving Promptness 

By copying only small objects over and over, we reduce the copying cost of the 

collector. We move large objects exclusively when a full collection occurs. However, if 

we take too long to reclaim large-sized garbage, we risk copying dead objects repeatedly. 

Many small objects shall be preserved only because they are referred to from objects 

that are undetected garbage. This lack of promptness may negatively affect overall 

performance, although this does not appear to be a problem in practice tUngar 8.1]. 

We correct this deficiency using our mark algorithm described in Chapter 5. When 

the small object space becomes full, our older-first collector marks aIl reachable objects 

in the heap, just before the first minor collection occurs. Unmarked objects stay in place 

during copying, and since the window is fed back to the allocator after its collection, the 

unreachable memory consequently becomes freed. On the other hand, marked objects 
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are moved at collection time, and each one is unmarked after its displacement. The next 

marking step is triggered only when all of the small objects have been unmarked. For 

that reason, the collector must collect the small object space entirely before marking 

once again. 

Large objects are collected and thus unmarked only when a full collection occurs. 

However, the collector may execute several marking steps before such a collection is 

initiated. Since our mark algorithm treats marked objects as leaves, the large objects 

may corrupt the process. We unmark all large objects before each marking step to 

remedy this situation. We maintain a table of pointers to rapidly find those objects 

while unmarking. 

6.3 Large Object Space 

A study of large object space is done in [Hicks 98]. This research provides some 

guidance about the best ways to implement a large object space policy. The authors 

examine the design space for copying garbage collectors in which large objects are man

aged in a separate space. They focus on how to determine the policy for classifying 

objects as large, and how to manage the large object space. 

They compare the performance of a treadmill collection to that of a mark-and

sweep collection for managing the large object space. Their conclusion is that for some 

heaps there exists a minimum threshold below which adding objects to the large object 

space does not generate better performance, while for others no such cutoff exists. 

They also find that the exact method used to collect the large object space does not 

significantly influence overall performance. 

6.4 Conclusion 

In this chapter we suggested a segregation strategy to manage large objects which 

we assume to be longer lived. We proposed a way to fight lack of promptness caused 

by our strategy. We also introduced a study that provides sorne guidance on how to 
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implement a large object space policy. 



Chapter VII 

GENERATIONAL OLDER-FIRST ALGORITHM 

Generational copying garbage collectors more frequently collect the youngest ob

jects, and copy any survivors to a mature space which is collected less often. Many 

empirical studies have shown that such a younger-first policy usually outperforms non

generational collectors [Ung<1r 84; Appel 8~); Hayes 91; Blackburn 02<1]. In practice, 

young generations often contain a higher fraction of unreachable objects because most 

programs satisfy the weak generational hypothesis, which assumes that young objects die 

at a faster rate than older objects. Each collection consequently reclaims more garbage 

space. 

7.1 Flaating Garbage 

Hansen and Clinger [Hansen 02] have measured the amount of fioating garbage 

produced by their generational collectors. They found that promotion fioats are often 

high, and comparable between collectors with either two or three generations. In the 

worst case, their collectors attain 48.5 percent of promotion fioats, copying 278.7 Mb of 

garbage. The copying cost is therefore seriously affected. 

7.2 Giving Objects Time ta Die 

Baker [Baker 9:~1 used a model of object lifetimes to demonstrate that younger

first collectors would surprisingly perform worse than non-generational collectors when 
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most objects die young. In his model, each object has a 50% probability of being 

already dead when a collection happens. By processing objects which have not yet had 

sufficient time to die, Baker shows that geIlerational strategies do not recover rnuch 

storage at once. An older-first policy, which proposes to collect old objects more often 

than younger ones, would recover more storage for a similar amount of effort. 

Older-first collection shows promise by collecting older objects first, and then giv

ing younger ones enough time to die. Stefanovic, McKinley, and Moss use a garbage 

collection simulation to point out potential improvements by using an older-first algo

rithm [Stefallovi(; 99(;; Stefanovîé' 99h], although older-first collectors colleet older objects 

over and over again, which is costly. 

Generational collectors do not manage the youngest objects efficiently, and older

first collectors fail to exploit the fact that older objects are generally longer-lived. We 

consider next a generational older-first (GOF) collector that combines the profits of 

both generational and older-first collectors to improve garbage collection. 

1.3 3-GOF Collector 

We propose here our 3-GOF collector which exploits the high mortality rate of 

young objects, avoids collecting the youngest objects, avoids collecting previously copied 

objects, and performs its collection incrementally. 3-GOF exploits the advantages of 

both the generational and older-first collectors. It partitions the heap into three gen

erations, and manages them using the older-tirst algorithm presented in Chapter L1. 

Figure 7.1 shows how the 3-GOF collector organizes the heap. 

As shown in this illustration, each generation contains many windows. The win

dow is the unit of collection. When a window from a younger generation is collected, 

the surviving objects are copied into the next generation. When the oldest generation is 

collected, survivors are moved into another window in the same generation. Therefore, 

the youngest generation does not maintain a copy reserve, but the older generations 

hoId the survivors, and hence we reserve a window from each older generation as a copy 
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reserve. 

The older-first collector assumes that survivors are the youngest objects in the 

heap after a collection. However, the GOF collectors consider the survivors as the 

youngest objects in the generation which contains them. 

7.3.1 Tracking Root Pointers 

As discussed in Chapter 2, generational and older-first copying collectors trace 

roots to find reachable objects at collection time. In Chapter 4, we proposed a new 

method which combined card marking and a remembered set to track root pointers in 

our older-first collector. We employ the same technique in our GOF collector. 

The GOF collector divides the heap into three generations; each of them contains 

many windows. It collects one window at time, so it must maintain a remembered set for 

each window in the heap, as the older-first collector does. Remember that a remembered 

set contains many pairs of pointers, one pair for each logical card partitioning the heap. 

A pair of pointers delimits a frame of memory which is bounded by the corresponding 

cardo While collecting a window, GOF assumes that ail frames may contain some root 

pointers, and thus it traces them to find live objects. 

7.3.2 Handling Large Objects 

In Chapter G, we presented our policy to handle large objects in the older-first 

collector. This policy aims to reduce the copying costs of our collector. We isolate large 

objects to collect them less often than small objects; we assume that large objects are 

usually longer-lived. We employ the same policy to manage large objects in our GOF 

collector. However, only the oldest generation maintains a large object space, as shown 

in Figure 7.1. 
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7.3.3 Marking Garbage Structures 

We described in Chapter 5 a new technique to mark reachable objects in a depth

first order without space overhead. We use a marking step to reclaim cycles and large 

garbage structures as soon as possible, and thus improve the promptness of our older

first collectoI. We employ the same technique to manage garbage structures in our GOF 

collector. 

By marking objects before collecting them, we never copy the floating garbage pro

duced by the collectoI. We only move marked objects during a collection, so unmarked 

dead objects are promptly fed back to the allocatoI. Hence, we improve promptness by 

reducing the copying costs of the collector. 

7.4 Conclusion 

In this chapter we discussed the impacts of floating garbage and long-lived objects 

on the performance of traditional collectors. We presented a basic implementation of a 

generational older-first algorithm, which exploits the high mortality rate of young ob

jects, avoids collecting the youngest objects, avoids collecting previously copied objects, 

and performs collections incrementally. We explained how the collector handles large 

objects and recycles garbage structures. 



Chapter VIII 

DEPTH-FIRST SEMI-SPACE ALGORITHM 

Copying garbage collectors implement either a breadth-first or a depth-first col

lection. The Cheney copying algorithm [Cheney 70] is breadth-first. It is traditiona.lly 

used because it does not require any extra temporary storage such as a stack. Algo

rithms that use a stack risk not being able to allocate sufficient rnemory to hold this 

stack. The required stack depth cannot be reliably predicted in advance sinee it depends 

on the user data structure. 

As a drawback, breadth-first collection may suffer from poorel' locality than a 

depth-first collection. It tends to group unrelated objects in memory (e.g., cousins, 

rather than parents and children). This is especially true when the breadth of the 

tree is large, for instance, when the root from which the garbage collector starts trac

ing is a large array of objects. It has been shown that such a lacl< of locality may 

lead to substantial performance degradation. For this reason, copying algorithms of

ten cluster related objects together in depth-first order, thus improving object locality 

[Sdù<olnick 77; Stamos 84; vVilson 91]. 

In this chapter, we first describe our depth-first copying algorithm, which does not 

create space overhead. We then present sorne techniques which try to improve locality, 

and finallY talk about sorne points of comparison for these algorithms. 
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8.1 Depth-First Copying without Space Overhead 

Copy-stacks are often used ta avoid procedural recursion that create extra space 

and time overhead while depth-first copying. Nonetheless, such a strategy may generate 

a space overhead proportional to the number of live objects populating the heap. In 

systems severely limited in space, this strategy may be unreliable because it consumes 

too much memory. Consequently, collector designers often use a breadth-first algorithm 

which does not require any temporary storage. They trade the space overhead to a lack 

of locality, which causes a loss of performance. 

We introduce here a new technique to copy objects in a depth-first manner without 

creating space overhead. Figure 8.1 illustrates the method we used. As one can see, 

we perform the same depth-first algorithm we use for marking objects (see Chapter 5). 

Instead of marking the objects, we copy them. By processing the root set entirely, we 

thus copy ail reachable objects. 

8.1.1 Depth-First Copying Trace 

Now, let us describe the pracess in detai1. Step a) in Figure 8.1 presents the 

starting point of our algorithm. Figure 8.2 reveals the pseudocode of our depth-first 

copying procedure, which receives a root as a parameter. In our procedure, we first 

check if the root is either null or refers to an object already copied, in both cases 

we return immediately. An object is already copied if its header contains a forward 

reference, which is the address of the object's copy, as the Cheney algorithm proposes 

(see Chapter 2). If the object has not yet been copied, we copy it and put the forward 

reference in its header. Then, we set the parent and child pointers as illustrated in step 

a) of our example. In Figure 8.1, objects with a plain header belong in the copy reserve, 

and objects with a striped header still belong in the old semi-space. The remaining 

steps take place in the core loop of our procedure. 

Our algorithm loops while either there is a child to visit or the parent is not the 
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Figure 8.1 Depth-First Copying without Space Overhead 

root. In our example, the root refers to an object which has potentially two children, 

so we enter the loop. In the loop, we first verify if the child pointer indirectly refers to 

an object. This is the case, so we check if this object has already been copied. As one 

can see in step a), the object has not yet been copied. Therefore, we copy the object, 

and we continue to go down since this object has a child. We are now at step b). In a 

breadth-first algorithm, we should move over the next adjacent child instead of going 

down the tree. 

Ali the following actions occur between steps b) and c). Starting from step b), 

we use the child pointer to access the next object, which has not been copied. We copy 

it, but we do not continue on down since this object does not have a child. So, we move 
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IF the root is nul1 or the object has been copied THEN
 

return
 

ELSE 

copy the object 

refer to the root using the parent pointer 

refer to the first child of the object using the child pointer 

WHILE there is a child OR the parent is notthe root LOOP 

IF there is a child THEN 

IF the child has not been copied THEN 

copy the child 

IF the child has another child THEN 

go down the tree
 

END IF
 

END IF
 

ELSE
 

go back up the tree 

END IF 

refer to the next child of the parent using the child pointer 

ENDWHILE
 

END IF
 

Figure 8.2 Pseudocode for the Copying Procedure 

the child pointer over to the next reference field. Again, we use the child pointer to 

access the next object, which also has not been copied. We then copy it, but now we do 

go down since the object has potentially two children. However, the first child is null, 

so we skip it. We are now at step c). 

In step c), we bump into a leaf which is an object that has already been copied. 

Since there are no other children, we have to go back up. In step d), the child pointer 

reaches an object header. We then go back up since no other child exists. At that point, 

the parent pointer refers to the root, and the child pointer indirectly refers to an object. 

Thus, we copy that object, and we continue on down since this object has potentially 

two children. These childen are both nul!. Thus, we go back up and move the child 

pointer over to the next word, which is an object header. This last move brings us to 

step e), we then reach the end of the copying process. 
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8.2 Points of Comparison 

At the bottom of Figure 8.1, we present the outcome of both the depth-first and 

breadth-first algorithms. One can see that the breadth-first algorithm places children 

away from their parents in memory, while the depth-first algorithm puts them next to 

each other. Studies have shown that some mutators tend to access objects which have 

references to each other closely in time [1\'10011 84; Huang 04], so the parent-child locality 

provided by a depth-first traversaI may incur better performances. 

Depth-first copy-stacks actually create a space overhead which may interrupt the 

mutator prematurely. Collector designers employ breadth-first algorithms specifically 

to avoid such a failure. We now propose a new method which does not require any 

temporary storage, avoiding the traditional space overhead. Our algorithm uses one 

word from each object visited to encode the copy-stack, and two pointers to remember 

the parent and the child currently treated. 

8.3 Improving Locality 

A mutator may exhibit predictable properties such as accessing objects in tum 

which were allocated in turn, or have references to each other. We can use this ob

servation to improve overall performance. The locality of reference is a property often 

exploited in garbage collection system to give better performances. 

In [H.uang 04], the authors show that static copying orders result in wide variations 

in performance, which they consider a pathology. They propose a dynamic analysis that 

detects mutator traversaI patterns and exploits them in a copying col1ector. 

8.4 Conclusion 

In this chapter, we described our depth-first copying algorithm. We further pre

sented some works which try to improve locality. Finally, we discussed some points of 

comparison for the depth-first copying collector. 



Chapter IX 

IMPLEMENTATION 

9.1 SableVM: A Virtual Machine for Executing Java Bytecode 

Ali of our new techniques have been implemented on SableVM, a virtual ma

chine for executing Java bytecode [Cagnon (nb; Gagnon 02a; Cagnon O;~a]. SableVM is 

intended as a research framework for efficient execution of Java bytecode. This frame

work is essentially composed of five main components: interpreter, verifier, class loader, 

native interface, and memory manager. 

This experimental framework publicly available is written in the C program

ming language. It has been designed to be a robust, extremely portable, efficient, 

and specification-compliant Java virtua! machine. Its source code is easy to maintain 

and extend. This makes SableVM an ideal framework for testing new high-level impIe

mentation features or bytecode language extensions. 

9.2 Memory Management Framework 

Memory management is a critical issue for an increasing number of applications. 

There is no one correct way to configure heaps, collectors, and allocators. The best 

choice depends on how the application uses memory as weil as on the user requirements, 

and so JVM's default garbage collection choices may not be optimal. In this section, we 

present a memory management framework that can be customized to specifie application 

needs. 
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We have integrated a flexible memory manager in SableVM. It has been designed 

to provide a great level of reusability, modularity, portability, and performance, and 

enables to test a variaty of aliocators, collectors, and write barrier mechanisms. The 

framework is easy to extend and provides a clean and meaningful experimental plat

form. It is implemented in C without any special support added to the language or the 

compiler. 

9.3 Available Collectors 

Currently, the framework provides five garbage coliectors (breadth-first semi

space, depth-first semi-space, generational, older-first, and generational older-first), but 

only one contiguous aliocator. Ali the collectors interact with this allocator. Nonethe

less, the framework offers a platform to implement new collectors and allocators. 

Our collectors share ail the common mechanisms, policies, and functionalities, 

such as root processing, copying, tracing, allocation, and collection mechanisms, and use 

the exact same implementation, allowing to obtain very accurate experimental results. 

The breadth-first semi-space collector implements Cheney's algorithm [Cheney 7U], and 

the depth-first collector implements the algorithm presented in Chapter 8. The gener

ational collectors work with three generations of fixed and possibly distinct sizes. One 

implements the basic algorithm described in Chapter 2, the other puts into practice the 

generational older-first algorithm proposed in Chapter 7. 

9.3.1 Older-First 

The older-first collector implements the basic scheme presented in Section 3.1. By 

default, the collector maintains the root set using the bounded frame marking mech

anism described in Chapter 4. It also provides completeness by marking objects as 

explained in Chapter 5. Finally, it assumes that large objects are longer-lived, and 

consequently puts into practice the large object space approach explained in Chapter G. 



78 

RC MS MC SS GC lC OF 
Pause Time v g b b v v v 
Throughput v g b g g v v 
Promptness e v v v b g v 
Completeness - + + + - - + 
Space Overhead g v g b b v v 
Unused Space b b e e v g v 
Fragmentation b b e e g v v 
Locality b b v v g g g 

Meaning
 
(b)ad, (g)ood, (v)ery good, (e)xce\lent
 

(-) not provided, (+) proviùeù
 

Table 9.1 Points of Comparison for the Older-First Mix Collector 

Points of Comparison 

Table 9.1 surveys the impacts of our older-first collector using the points of com

parison. We further examine what this table demonstrates. 

Our older-first mix collector reduces the average pause time because it collects 

the heap incrementally. By doing so, it improves both the responsiveness and the 

throughput of the mutator. 

We fight fragmentation by creating the heap in one chunk of memory. We also 

create the structures employed to manage the heap within that chunk of memory. We 

thereby hope to improve overall performance by reducing fragmentation. 

Vve reduce and control the space overhead of the older-first mix collectaI. By 

collecting only one window at a time, we reduce the copy reserve needed to hold the 

survivors of a collection. By combining the card marking and remembered set tech

niques, we control the space overhead needed to remember the root pointers. We also 

reduce unused space by allowing objects to spread over many cards. However, objects 

cannot span across many windows, and so there is sorne unused space left at the end of 

each window. 
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The older-first mix collector provides some locatity by keeping close together in 

memory objects that were allocated one after the other. The overall performance should 

be improved by mutators accessing closely in time objects which were allocated together. 

However, the large object space degrades this locality by holding large objects away from 

the other objects they refer to. 

The bounded frames allow the collector to trace objects even partially. It thus 

traces less space than collectors which use card marking. However, it still traces more 

space than collectors which use remembered sets. 

By marking objects before collecting them, the older-first mix collector can reclaim 

all garbage. Using this technique, it further improves promptness by rec\aiming garbage 

as well as cyclic and large structures promptly. 

Finally, the older-first algorithm causes older objects to be repeatedly collected. 

Studies show that in practice the mortality rate is higher for younger than older objects 

[Hayes 91; Baker 93; Hayes 93; Sl,cfanovi{: 94]. So, we should collect older objects less 

often to reduce copying costs, We now present a solution that is the generational older

first collector. 

9.3.2 Generational Older-First Collector 

The generational older-first collector is implemented as explained in Chapter 7, 

By default, it uses the bounded frame marking mechanism (Chapter 4), provides com

pleteness (Chapter 5), and maintains a large object space (Chapter 6) as the older-first 

collector does. In fact, our generational version has been implemented using very few 

lines of code (approximately 200 lines), since it shares its core with the older-first col

lector. 
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RC MS MC SS GC lC OF GO 
Pause Time v g b b v v v v 
Throughput v g b g g v v v 
Promptness e v v v b g v v 
Completeness - + + + - - + + 
Space Overhead g v g b b v v v 
Unused Space b b e e v g v g 
Fragmentation b b e e g v v v 
Locality b b v v g g g g 

Meaning
 
(b)ad, (g)ood, (v)ery good, (e)xcellent
 

(-) not provided, (+) provided
 

Table 9.2 Points of Comparison for the Generational Older-First Collector 

Points of Comparison 

Table 9.2 presents the effects of our generational older-first collector using the 

points of comparison. Let us describe what this table demonstrates. 

The generational older-first collector provides the same advantages as the older

first mix. It reduces the average pause time because it collects the heap incrementally, 

and consequently improves both the responsiveness and the throughput of the mutator. 

It also provides completeness by marking objects before collecting them. 

The generational older-first collector further improves promptness by reclaiming 

garbage as weil as cyclic and large structures promptly. It also reduces copying costs by 

holding a large object space, and minimizes fragmentation by creating and managing the 

heap within one block of memory. It reduces space overhead, minimizes the amount of 

unused space, and fixes the size of the remembered set. Finally, it conserves the locality 

of objects allocated closely in time. But, the generational older-first collector does not 

mix survivors with newly allocated objects. We therefore believe that the generational 

older-first collector should preserve a better locality than the older-first mix. 

The generational older-first collector has an advantage over the older-first mix: 
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it does not copy both older and younger objects at the same rate. It copies younger 

objects more often than older objects which are generally longer-lived. Although, one 

should remember that it does not collect the youngest objects. By doing so, we hope to 

reduce the copying costs of the collector. 

9.4 Marking Policy 

The older-first and the generational older-first collectors mark objects only when 

every live object is unmarked. Thus, if the objects have already been marked, the whole 

heap is incrementally collected before the marking step is repeated. Consequently, we 

reduce the copying costs by moving only the objects marked as live, and minimize the 

marking costs by collecting ail of the heap before a marking step occurs. 

There is a problem, however. The marking traversal passes through both small 

and large objects, but small objects are collected repeatedly while large objects are not. 

This means that some objects may still be marked when a marking step is launched, 

thus corrupting the procedure. As a solution, we propose to maintain a table of pointers 

which reference large objects into the large object space. When a large object is alla

cated, the allocator adds the object's address to the table. The table is then traversed 

and updated as a remembered set while we unmark large objects. 

9.5 Full Collection Policy 

When the whole usable heap memory is exhausted, and collections do not succeed 

in freeing sufficient garbage memory, the memory manager launches a full collection 

and widens the heap. For the semi-space and older-first collectors, this strategy is 

staightforward. Survivors are compacted at the beginning of the heap, and may spread 

over many windows for the older-first collector, which ensures that no object crosses the 

windows boundaries. 

The generational collectors copy objects to the older generations as they usually 

do, but they compact them at the beginning of each generation. Objects in the oldest 
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generation stay in that generation, but they are also compacted. After a full collection, 

ail of the nursery is available for allocation. Objects in the large object space are also 

compacted at the end of the heap. Only the oldest generation is enlarged when a full 

collection occurs, so the large object space can also take up more space. 

9.6 InternaI Write Barrier 

The memory manager provides a public (or external) write barrier procedure 

which remembers ail pointer stores, and mutators cali this procedure every time they 

store a reference into an object field. Collectors may use this write barrier as weil to 

update remembered sets while moving objects, but they sometimes don't. Our gener

ational and older-first collectors work with a more efficient private (or internaI) write 

barrier. 

Collectors trace frames sequentially, starting at the lowest address of the first 

frame. When they begin tracing a frame, they assume that the frame contains no 

addresses of survivors. On that account, they store the lowest and highest memory 

addresses into two temporary pointers, which shall indicate how to skip this frame 

during the next collection. However, sorne objects may still survive. 

When survivors are encountered, collectors copy them. When collectors copy the 

first survivor, the address of the object field that refers to the survivor is stored into both 

temporary pointers, therefore indicating that the frame now contains a survivor. If the 

object is not the first survivor, the address is stored only in the temporary pointer which 

indicates the end of the current frame. The actions performed after copying a survivor 

represent our internai write barrier. This internai write barrier is clearly an improvement 

over the external one, which executes much more instructions (see Figure 4.5). 

9.7 Fragmentation Policy 

The memory manager minimizes fragmentation. It reserves a large chunk of 

memory, and places the heap and the structures used to manage it consecutively into 
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that reserved chunk. The heap is placed at the lowest address, remembered sets appear 

next, including the table of pointers employed when unmarking large objects. The size 

of the table is determined by computing the maximum number of large objects which 

the large object space can hold, and multiplying this number by the pointer size. 

9.8 Command Line Options 

SableVM enables users to override the default garbage collection setup by provid

ing command line options at compile-time. Users can thus select and tune the collector 

and the write barrier mechanism they wish to employ. The memory manager actually 

provides two methods to compute the root set, the card marking approach using a word 

vector, and our novel bounded frame marking scheme. Users can also customize the 

heap, and decide whether or not they want to compute memory management statistics. 

9.9 Conclusion 

In this Chapter, we described collectors that we have implemented on our memory 

manager framework. We further presented points of comparison for these collectors. 

Finally, we explained the policies and highlighted related constructs which our collectors 

employ. 



Chapter X 

EXPERIMENTAL RESULTS 

Our experiments provide comparison points between all the algorithms presented 

so far. In this chapter, we present the platform we used to realize our experiments, 

and the benchmarks employed to conduct them. Then, we describe our experimental 

setting and show our results, which were obtained using diverse implementations of semi

space and older-first algorithms. More importantly, we discuss our results to reveal the 

inherent space-time trade-offs of collector algorithms. 

10.1 The Test Platform 

Hardware - We used two processor architectures to conduct our experiments 

(AMD and Pentium 4). We first performed ail our experiments on a 1.86GHz Pent.ium 

II based system, with 2 Gb of RAM, 2 Mb of cache memory, and a 7,200 RPM hard 

disk. Then, we performed them on a 0.8GHz AMD Duron based system, with 512 Mb 

of RAM, 512 Kb of cache memory, and a 7,200 RPM hard disk. 

SableVM - We ran our benchmarks using a modified version of SableVM 1.13, 

which integrates the memory manager framework described in Chapter 9. We provided 

SableVM with a variety of configuration parameters, which allowed us to tune collector 

algorithms, control write barrier mechanisms, vary heap sizes, and measure our results. 

We executed all our experiments using SableVM with gcc version 3.3.6, the real life 

brokenness features enabled, and with the direct-threaded interpreter. 
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Software and Operating System - AIl execution time measurements are 

based on system + user times returned by the GND time commando We obtained times 

by executing sorne benchmarks on a machine running Debian GND/Linux 3.1 (a.k.a. 

sarge) with kernel version 2.6.8. AlI daemon processes were turned off during these 

tests. 

10.2 Benchmark programs 

We have performed our experiments on a Pentium IV based workstation, running 

SPECjvm98 benchmarks and two object-oriented applications: Soot version 1.2.3 17 

and SabieCC version 2.17.3 18 . 

We present here sorne properties of the benchmarks used to get our exprimental 

results. 

SPECjvm98 - This benchmark suite [Corporation D8] is intended to measure 

the performance of Java clients, or the speed of execution by the Java Virtual Machine 

of Java byte codes. This suite requires basic byte code execution, graphies, networking, 

and 1/0, but SPEC implies that former functions will normally dominate benchmark 

performance. 

Soot - Soot is a Java optimization framework [Group DG]. It provides interme

diate representations for analyzing and transforming Java bytecode, and can be used 

as a stand-alone tool to optimize or inspect class files. Soot is a free software licensed 

under the GND Lesser General Public License. 

Soot uses multiple structures and creates many objects to analyze, inspect, trans

form, and optimize class files. Its high allocation rate is a great behavior to exploit 

when configuring the memory manager. In our experimental study, we used Soot with 

javac 1.3 as its input. This software provides a lot of class files thus producing a higher 

allocation rate. 

SableCC - SabieCC is a Java compiler generator [Gagnon 02h]. It is an object
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oriented framework that generates compilers (and also interpreters) in the Java pro

gramming language. It consists of a deterministic fini te automaton (DFA) based lexer 

generator, an LALR(l) parser, an abstract syntax tree (AST) builder generator, and 

an object-oriented AST framework generator. SableCC is a free software licensed under 

the GNU Lesser General Public License. 

SableCC, just like Soot, uses multiple structures and creates many objects to 

generate a compiler front-end for a compiled grammar. Its high allocation rate is also 

a great characteristic to exploit when configuring the memory manager. In our experi

mental study, we used SableCC to compute a compiler for the Java 1.4 language. Since 

it is described using severallexical definitions and grammar productions, this grammar 

leads to a higher allocation rate. 

10.3 Overall Measurements 

We realized a variety of measurements to expose the space-time trade-offs of 

our collectors. Using many benchmarks, we computed times by taking the average of 

five runs on SableVM. For fair comparisons, each experiment fixed the heap size, and 

triggered a collection when the program exhausted all the usable memory. 

When evaluating a garbage collection system, we can measure the time spent exe

cuting distinct parts of the system. These times provide another method of comparison 

between systems. Table 10.1 presents times that are considered during our experiments. 

The pause time includes copying, tracing, and marking time. It excludes the 

allocation and write barrier time, which are part of the mutation time. The mutator 

spends the write barrier time to concurrently compute a subset of the root set used by 

the collector to find reachable objects. 
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Time ~ Meaning Formula 

Tracing time spent by the collector to 
trace objects 

Marking time spent by the collector to 
mark objects 

Copying time spent by the collector to 
copy objects 

Pause time spent by the collector to Tracing + Marking + Copying 
collect objects 

Barrier time spent by the mutator ei
ther to maintain root set or to 
update reference counts 

Allocation time spent by the mutator to 
allocate objects 

System time spent by the system to Total - Application 
execute the system's code 

Total time spent by the system to Application + System 
execute the program 

Application time spent by the system to Total - System 
execute the application's code 

Mutation time spent by the mutator to Application - Pause 
mutate objects 

Table 10.1 Times to Consider when Evaluating Garbage Collection Systems 
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10.4 Performance Measurements 

We performed execution time measurernents with SableVM to measure the effi

ciency of garbage collecting using our techniques. 

Overall Performance Using a Large Heap 

In a first set of experiments, we measured the relative performances of the breadh

first semi-space (BSS), depth-first semi-space (DSS), older-first (OF), and older-first 

large object space (OFL) copying collectors. In order to perform these experiments, 

four separate versions of SableVM were compiled with identical configuration options 

(heap size: 250MB, generation size: 75MB (younger) - 75MB - 100MB (older), window 

size: 25MB, card size: 32KB, large object size: lOOKB, large object space size: 50MB). 

For each collector, the total execution time is reported in Table 10.2. The second is the 

unit of time used to present our results. Values between parentheses are used to express 

the length of the collectors' execution timesin comparison with both BSS's and OF's 

execution times. 

The six columns of Table 10.2 contain respectively: (a) the name of the executed 

benchmark, (b) the execution time in seconds using the breadth-first semi-space copying 

collector, (c) the execution time in seconds using the depth-first semi-space copying 

collector, (d) the execution time in seconds using the older-first copying collector, (e) 

the execution time in seconds using the older-first copying collector with a large object 

space, and (f) the execution time in seconds using the generational older-first copying 

collector. As both platforms generate comparable results, we report only those obtained 

using the AMD machine. 

The Depth-First Order Provides Improvements 

The overall time variation between the depth-first and the breadth-first copying 

orders is only 2%, there is no consistent winner. Traversing the objects in a depth-first 
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benchmark BSS DSS OF OFL GOF 
cornpress 376.09 376.51 375.41 367.56 365.43 

(0.97) (0.97) 
db 148.60 147.68 152.71 152.83 153.21 

(0.97) (0.99) (0.96) 
jack 47.40 47.14 49.42 48.42 49.57 

(0.96) (1.00) (0.96) (1.02) (0.98) 
javac 113.40 112.71 123.81 119.20 117.23 

(0.92) (0.99) (0.91) (1.05) (0.96) 
jess 84.09 84.19 96.78 92.41 85.45 

(0.92) (1.00) (0.87) (LlO) (0.95) 
rnpegaudio 303.84 303.63 304.59 305.00 306.34 

rntrt 102.20 101.90 102.30 103.49 102.01 

raytrace 99.31 99.23 99.80 100.70 101.21 

sablecc 45.33 45.21 47.38 47.38 47.23 
(0.96) (1.00) (0.96) 

soot 823.52 807.54 1896.16 909.97 
(0.43) (0.98) (0.42) (LlO) (0.47) 

Table 10.2 GC Performance Measurements Using a Large Heap (AMD) 

arder improves overall performance or provides one similar to a breadth-first order for 

all the benchmarks. 

The Large Object Space Provides Improvements 

The older-first collector which segregates the large objects (OFL) provides perfor

mance improvements over the basic older-first collector. The large object space improves 

total execution time by up ta 53% for the Boot benchmark, and on average by 2% ta 

5%, for the heap sizes we have tested. Even more, segregating large objects enables the 

older-first collector to achieve better performances than the semi-space collectors, the 

improvement is up to 3% for the Compress benchmark. 

The Older-First Collector Produces Pathological Cases 

The older-first collector provides suitable performances on average, but does not 

engender significant improvements on the benchmarks we have tested. The older-first 
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algorithm collects the same objects repeatedly, including floating garbage. Sometimes, 

clustering many garbage collections might prevent mutator progress over a longer period 

of time. For the Boot benchmark, we found five clusterings of garbage collections, 

resulting in a 57% performance overhead over the breadth-first semi-space collector. On 

the Pentium machine, this variation is as much as 17% on the overall performance. It is 

quite possible that the data cache characteristics of certain machines have sorne effects 

on overall performance. 

The Older-First Collector Uses Memory Efficiently 

One should remember that older-first garbage collectors need to reserve less mem

ory space than semi-space collectors to maintain survivors and thus reduce space over

head. Results, on the mtrt and raytrace benchmarks, show that no garbage collections 

occur using the older-first algorithm. Only one collection occurs, for each benchmark, 

using the semi-space collectors. 

The Write-Barrier Performance Overhead 

Now we examine the pointer-maintenance costs. When using a heap size of 250 

MB, no garbage collections occur on both the db and sablecc benchmarks. The total 

execution time includes both mutator and write-barrier times, the latter equals 0 for 

semi-space collectors. Recall that our collectors share all common mechanisms, policies, 

and functionalities, such as root processing, copying, tracing, allocation, and collection 

mechanisms, and use the exact same implementation. Thus, the performance overhead 

of the write-barrier explains the 4% variation in execution time between the older-first 

and the semi-space collectors. 

With the db benchmark, 34.52 million write barriers (see code in Figure 4.5) were 

executed. The number of interesting pointers, which must be remembered, was 34.5 

million for the older-first collector. With the sablecc benchmark, 16.03 million write 

barriers were executed. The number of interesting pointers was 15.76 million for the 
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older-first collector. This engenders a significant time overhead. However, benefits of 

reduced copying costs generate performance improvements. 

The Generational ülder-First Col1eetor Reduces Copying Costs 

The generational older-first algorithm does not col1ects the older objects repeat

edly. Benefits of reduced copying costs generate performance improvements. For the 

compress and javac benchmarks, we found that the generational older-first collector 

engenders performance improvements over the older-first collector. However, the gen

erational mechanism produces a time overhead that has sorne effects on overall perfor

mance. Therefore, the generational older-first collector provides suitable performances 

on average, but does not engender significant improvements on the benchmarks we have 

tested. 

Impact of the Card Size on Performances 
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Figure 10.1 Impact of the Card Size on Performance of the Older-First Collector 

Figure HU compares both GC time and total time for the older-first collector 

running on Soot. On the left performance graph, the left y-axis is the GC time. On 
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Card Size (KB) Data Traced (MB) 
4 924 
8 998 
32 1227 

2560 2532 

Table 10.3 Average Amount of Megabytes Traced by the Older-First Collector 

the right performance graph, the left y-axis is the total time. The bottom x-axis of 

each graph is the card size, and the values used for the plots are the window sizes. As 

both platforms engender comparable results, we report only those obtained using the 

Pentium machine. 

These results show that smaIl card sizes do indeed obtain performance improve

ments over large card sizes. Garbage collecting, using a large card size of 2.5 MB, 

produces a garbage collection time (115.37 seconds) that is up to 6.6 times higher than 

the garbage collection time (17.49 seconds) resulting from using a card size of 4 KB, 

for a fixed heap size (250 MB) and a fixed window size. When using a card size of 2.5 

MB, the total time is 364 seconds. This performance is 1.38 times higher than the best 

performance (264 seconds) obtained using a card size of 4 KB. 

A large card size degrades performance mainly by increasing the amount of data 

traced during a collection, as shown in Table 10.~~. Garbage collection time is signifi

cantly affected by the card size with our tested benchmarks. Recall that total execution 

time includes the time spent in garbage collection, mutator time, and write-barrier time. 

For the execution time, the relative difference is not as pronounced as the garbage collec

tion time alone. This dilution of differences is to be expected, because garbage collection 

time is considerably less than the mutator time, especially with larger heaps. 

Impact of the Window Size on Performances 

Figure 10.2 compares both Ge time and total time for the older-first collector 

running on Soot. On the left performance graph, the left y-axis is the GC time. On the 
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Figure 10.2 Impact of the Window Size on Performances of the Older-First Collector 

right performance graph, the left y-axis is the total time. The bottom x-axis of each 

graph is the window size, and the values used for the plots are the card sizes. We report 

only results obtained using the Pentium machine. 

These results show that large window sizes do obtain performance improvements 

over small window sizes. Garbage collecting, using a small window size of 5 MB, pro

duces a garbage collection time (115.37 seconds) that is up to 2.68 times higher than the 

garbage collection time (42.97 seconds) resulting from using a window size of 25 MB, 

for a fixed heap size (250 MB) and a fixed card size (2.5 MB). When using a window 

size of 5 MB, the total time is 364.54 seconds. This performance is 1.26 times higher 

than the best performance (289.63 seconds) attained using a window size of 25 MB. 

Garbage collection time is significantly affected by the window size with our tested 

benchmarks. In absolu te value, the difference in garbage collection times is much bigger 

than the difference in execution times. A small window size degrades performance 

mainly by increasing both the amount of data copied during a collection and the total 

number of collections, as shawn in Table 10.4. 
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Window Data Object Average Object Collection 
Size (MB) Copied (MB) Copied Size (KB) Count 

5 1028 30958 36.38 682 
20 931 189009 5.05 166 
25 993 230953 4.4 136 

Table 10.4 Average Amount of Megabytes Copied by the Older-First Collector 

Impact of the Window Size on Copying Costs 

In the presence of smail windows, the amount of floating garbage appears ta be 

significantly higher, hence increasing copying costs. Also, the objects copied seem to 

be significantly larger. When the window size is small (5 MB), the average size of the 

abjects copied is 36.38 KB, which is up to 8.27 times the average size (4.4 KB) of the 

objects copied when a larger window size (25 MB) is used. Many studies [Caudill 86; 

Ungar 92; Hicks 97; Hicb 98] have already shown that large objects generally have 

longer lives. Our results confirm this realization. 

Copying costs do not explain ail of the performances obtained. The older-first 

collector makes many more collections when the window size is small, hence decreasing 

overall performance. Although a larger number of collections may be good for reducing 

pause times, it increases the execution time, since stacks must be scanned more often and 

garbage collection startup overhead occurs more frequently. Furthermore, object locality 

may be better when using a large window size, producing performance improvements 

over small window sizes. 

Responsiveness of the ûlder-First Collector 

Simple measures, such as the length of the longest garbage collection pause or a 

distribution of pause times, do not take into account clustering of garbage collections, 

which might prevent mutator progress over a longer period of time [Blackburn 02a]. 

However, Table 10.5 presents results obtained when executing Soot using a heap size 

of 280 MB, which does not generate clustering of garbage collections. We report only 
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GC Total GC Coll. Relative Relative Relative 
Aigo. Time (sec.) Time (sec.) Count Av. Pause Min Pause Max Pause 
DSS 253 12 39 2.65 2512 1.58 
BSS 256 15 39 3.26 35.99 2.01 
OF 260 16 136 1 8.05 1 

OFL 264 114 681 1.4 1 2.08 

Table 10.5 Responsiveness of Collectors 

results obtained using the Pentium machine. 

The seven columns of Table 10.5 contain respectively: (a) the name of the algo

rithm used, (b) the execution time in seconds, (c) the garbage collection time in seconds, 

(d) the number of collections, (e) the average pause time of the collector relative to the 

best average pause time, (f) the minimum pause time of the collector relative to the 

best minimum pause time, and (g) the maximum pause time of the collector relative to 

the best maximum pause time. 

Ali these collectors provide comparable overall performances. Older-first collec

tors offer better responsiveness and throughput than the other configurations. Since 

the increment size of both the large object space and the semi-space collector is larger, 

both the average and maximum pause times are longer. Semi-space collectors produce 

an average pause time that is up to 3.26 times higher than the average pause time of 

older-first collectors. 

Overall Performance Using a Small Heap 

In this set of experiments, we measured the relative performances of the breadth

first semi-space (BSS), depth-first semi-space (DSS), older-first (OF), and older-first 

large object space (0FL) copying collectors. To perform these experiments, four sepa

rate versions of SableVM were compiled with identical configuration options (heap size: 

40MB, window size: 5MB, card size: 32KB, large object size: 5KB, large object space 

size: 10MB). Our results are shown in Table 10.6. 
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benchmark BSS DSS OF OFL 
cornpress 98.66 102.32 96.80 94.72 

db 44.76 40.86 46.16 44.69 
jack 20.29 20.16 20.38 20.36 
javac 37.90 37.62 38.48 38.52 
jess 25.47 25.64 26.85 26.56 

rnpegaudio 90.15 90.63 87.81 87.79 
rntrt 33.37 33.41 32.20 32.13 

raytrace 3216 32.09 31.04 31.02 
sablecc 13.80 13.72 14.61 14.37 

Table 10.6 Ge Performance Measurements Using a Small Heap (Pentium) 

The five columns of Table 10.6 contain respectively: (a) the name of the executed 

benchmark, (b) the execution time in seconds using the breadth-first semi-space copying 

collector, (c) the execution time in seconds using the depth-first semi-space copying 

collector, (d) the execution time in seconds using the older-first copying collector, and 

(e) the execution time in seconds using the older-first copying collector with a large 

object space. We report only the results obtained using the Pentium machine. In the 

presence of a small heap size, the overall time variation between the semi-space and 

older-first collectors is up to 3%. The older-first collector algorithm was the consistent 

winner. 

10.5 Discussion 

We believe that better implementations of the generational older-first and the 

older-first collection algorithms are possible. It is clear that sorne configurations of 

these collectors offer better responsiveness than others. We have not yet explored the 

configuration space fully. For example, the program itself and the garbage collection 

algorithm have different cache and memory behaviors, which interact in complex ways. 

Relating performance improvements to the characteristics of various benchmarks, to 

offer a tuning strategy, is beyond the scope of this thesis and is left for future work. 

Within the limits of the effects that we have studied, the primary limitation of our 

experiments is the small set of heaps sampled. Over time we expect to gather heaps from 
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a wider range of applications. AIso, we expect to impIement more garbage collectors 

and report on them, including the generational collectors described previously, which 

are still not fully operational. 

Final!y, there are sorne marking policy considerations with older-first collection 

that we did not explore in our experiments. This is left for future work. One consider

ation is when to trigger the marking phase. If we mark objects too often, the marking 

phase significantly degrades overall performance. This is the case of the naive marking 

policy that we explained in Chapter 9. If we mark too soon in advance, objects have 

not had as much time to die, so we reclaim fewer dead objects. 

10.6 Conclusion 

In this chapter, we presented our experimental results which provide comparison 

points between the algorithms presented so far. We presented the platform we used 

to realize our experiments, and the benchmarks employed to conduct them. Then, 

we described our experimental setting and showed our results, which were obtained 

using diverse implementations of the semi-space and the older-first algorithms. More 

importantly, we discussed our results to reveal the inherent space-time trade-offs of al! 

collector algorithms. Using our techniques, we have shown that a garbage collector 

can deliver competitive collection performances and even surpass that of a traditional 

collector on some benchmarks. 



Chapter XI 

RELATED WORK 

Research has been done on several techniques related to garbage collection. In 

[Blackburn ü2a], the authors identify five key insights for copying garbage collection. (1) 

Generational algorithms exploit the hypothesis that most objects die young. (2) They 

assume that older objects are longer-lived and thus collected less often. (3) Using small 

nurseries and incremental algorithms can improve response times. (4) Small nurseries 

and copying collectors can improve data locality. (5) Giving the very youngest objects 

time to die can improve collector performances. Studies [Caudill 86; Ungar 92; Hicks 97; 

Hicks 98] have further shown that (6) segregating large objects can provide performance 

improvements. (7) The choice of a garbage collection algorithm can improve mutator 

locality [Blackburn 04a]. (8) Performance-critical software can embrace modulaI' design 

and high-levellanguages [Blackburn 0,1b]. 

In this chapter, we review sorne previous related works. 

11.1 Garbage Collection Algorithms 

In this section, we look at other implementations of both the older-first collector 

algorithm and the generational collector algorithm. We non-exhaustively highlight sorne 

of the most important advantages and drawbacks of these implementations. 
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11.1.1 Ülder-First Collectors 

Simulation and Prototyping 

In [Stefanovié 99c; Stefanovié 99b], the authors are among the first to put forward 

the older-first collector algorithm. They use a cornbination of simulation and prototyp

ing to evaluate both the algorithm and the write barrier rnechanism that they suggest. 

Theil' write barriel' applies directional filtering to ignore useless stores. Sometimes only 

5% of the total number of stores are remembered when their filter is used. The authors 

measured the space overhead caused by their older-first collector to be 1% of the heap 

size. They found that the costs of filtering and rernembering stores offsets the copying 

cost reduction. 

Theil' design is based on dynamically al10cating fixed-size blocks to the various 

heap regions, using a block table to map addresses to remembered sets. This strategy 

may increase the fragmentation and nullify the overall performance in practice. It needs 

cooperation from the operating system to acquire and release address space as the heap 

progresses from higher to lower addresses. Furthermore, their directional filtering tactic 

is possible only when the collector uses an environment with a large address space. 

These design choices greatly reduce the number of compatible platforms. 

Older-First Collector in Jikes RVM 

The same authors [Stdanovié: 9~bl join forces with others [Stefanovic 02] to put 

into practice, evaluate, and report on their ideas. They propose sorne modifications 

to their former design, mostly because their collector uses a 32-bit environment. The 

directional filtering strategy employed forces the col1ector to sirnulate a larger address 

space. 

Theil' older-first collector uses an allocation region and a copy reserve. Both 

can be viewed as first-in-first-out queues of windows. Whenever ail usable memory is 

consumed in the allocation region, the collector collects the oldest window, copying ail 
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survivors to the copy reserve. When al! usable space is consumed and only survivors fil! 

the heap, the collector interchanges the roles of the two queues before collecting again. 

Their write barrier audits and filters pointer stores involving two windows, reducing the 

number of remembered pointers. A time-of-death value is coupied with each window 

and used to order the collection of windows. 

The fil ter introduces variability and stochastic behavior in the collectoI. When 

the time-of-death values of both the allocation and the copy queues conftict, the collector 

collects an unfixed number of windows to reset these values. The special case, where 

the time-of-death value reaches the largest value allowed by the operating system, is 

eliminated. 

Their study shows that older-first collectors can perform as the simulation results 

suggest. The collector they propose does not bound pauses, increases write barrier 

costs, and fails to provide completeness and promptness. Therefore, their .solution is 

incomplete. 

11.1.2 Generational Col1ectors 

Renewal-Older-First 

Hansen and Clinger [Hansen 02] propose a renewal-older-first (RüF) generational 

collector which divides the heap into two generations, and always collects the older 

generation. The RüF algorithm groups objects according to their renewal age, which 

is defined as the time that has passed since the object was last classified as reachable 

by a collection within its generation, or as its actual age if it has never been considered 

for collection. After each collection, they assume that the survivors are the youngest 

objects in the heap. 

They implement the RüF algorithm by dividing the heap into steps that contain 

objects of similar age. The steps are arranged from youngest to oldest. Additional 

steps are kept as a copy reserve. A policy parameter determines the dividing line 
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between the younger and older generations. When the older generation is collected, the 

ROF collector evacuates the live data into the reserve. Then the younger generations 

become the oldest steps of the ROF heap, and the steps that hold the survivors become 

the youngest steps. Sorne of the free steps are used to replenish the reserve, and the 

remaining free steps become available for allocation. 

Hansen and Clinger also provide a 3-generational collector (3ROF) that consists 

of two generations that are collected by the ROF algorithm, plus a nursery collected 

as part of every collection. Their hybrid algorithm is younger-first in the sense that 

it collects the nursery most often, but it is also older-first in the sense that the oldest 

generation is collected more often than the intermediate generation. 

Ali the collectors that the authors present use a remembered set strategy for 

pointer-tracking. Their older-first collectors require objects to be stored in several sllb

sets at the same time. That requirement makes card marking and header marking less 

attractive, since each card or object would need one mark bit for each subset of the 

remembered set in which it might be stored. 

Beltway 

In [Bladcburn 02a], the authors present the Beltway framework. Beltway collec

tors use increments and belts. An increment is their unit of collection. A belt groups one 

or more increments into a first-in-first-out queue. Each increment on a belt is collected 

independently in FIFO order, and each belt is also collected independently. Belts are 

more general than generations since ail objects within a generation must be collected at 

once, but increments are independently collected and there may be multiple increments 

on one belt. 

Beltway proposes a range of copying collectors that exploit the key insights pre

sented so far. The generality of the Beltway framework enables the implementation 

of new copying collectors but increases pointer tracking costs. However, sorne Beltway 

configurations lack completeness because they fail to collect garbage cycles that span 
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more than one increment. The authors propose a three-belt generational coliector as 

an alternative approach to their lack of completeness. This col1ector coliects the third 

belt in its entirety only once it has grown to consume ail of the usable memory. This 

configuration achieves completeness at the expense of incrementality, longer pauses, and 

space overhead. 

Beltway is integrated in Jikes RVM, which produces a high write-barrier activity 

in the nursery due to the initialization of every object's type pointer. To eliminate this 

write-barrier overhead, the authors use a single nursery increment and extend the basic 

Beltway barrier to filter any pointer whose source lies in the nursery. This optimization 

foregoes older-first behavior within the nursery. Thus, Beltway is not able to benefit 

from multiple nursery increments. Furthermore, Jikes RVM lays out arrays and scalar 

objects in different directions in the heap. The beginning of one object cannot be 

determined from the previous object. Consequently, Beltway col1ectors cannot use card 

tables, limiting the number of key ideas in the garbage collection literature that can be 

implemented and tested. 

11.2 Pointer-Tracking Using Card Marking 

In this section, we look at other implementations of the card marking mechanism. 

We non-exhaustively highlight sorne of the most important advantages and drawbacks 

of these implementations. 

Basic Aigorithm 

One implementation of this scheme divides the heap into equal-sized logical cards, 

each covering 2k bytes of the heap space for a fixed value k. A table indicates whether 

each card might contain pointers to younger generations. To map an address to an entry 

in the table, one shifts the address to the right by k bits and uses the result as an index 

into the table. Whenever a reference is stored into an object, the corresponding card 

becomes dirty. At collection time the dirty cards of ail generations not being collected 
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are scanned [Hosking 92]. 

Bit Vector 

In arder to reduce space overhead, Wilson implements the card table as a bit 

vector. Each generation has its own bit vector, which contains a bit for each logical 

cardo In this scheme, a store check simply marks the bit corresponding to the location 

being updated. At collection time, the collector scans the bit vector and, whenever 

it finds a marked bit, examines ail the pointers in the corresponding card of the heap 

[Wilson 8gb]. Card marking, as just described, can be fairly slow. Since a bit must 

be inserted into the bit vector, the corresponding word has to be read from memory, 

updated and then written back. In addition, bit manipulations usually require several 

instructions on rusc processors [Hôlzlc 93]. 

Figure 11.1 illustrates a generational heap using a card marking mechanism. The 

nursery's bit vector indicates that the fourth and fifth cards possibly contain point

ers referring to the nursery. Both of these cards must be traced at the next nursery 

collection. 

1010101 J 1J 1010101010101010101 
Bil Veclor For The Nursery Card 

Free Space 

Allocaled Objects 

Nursery 1 Middle-Aged 1 Didesi 

Figure 11.1 Heap Layout for a Generational GC Using Card Marking 

Byte Vector 

Chambers and Ungar use bytes instead of bits to implement the card table [Cham

bers 92]. Every card in the heap has one byte associated with it. A card is dirtied simply 

by storing a special value into its corresponding byte. Although this technique uses eight 
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times more memory to represent a card than Wilson's scheme, the space overhead is 

usually still small. By using bytes instead of bits, barrier time is reduced by eliminating 

word and bit manipulations. 

Word Vector 

A straightforward per-word bitmap implementing the card table would be pro

hibitively large in terms of memory for large systems, thus increasing the space overhead. 

Per-word storage is used by Sobalvarro in [Sohalvarro 88]. It maintains a sparse data 

structure to avoid large space costs. Manipulating this two-level data structure slows 

down the system significantly, requiring almost twice as many additional instructions 

for each store in the heap. 

Page Protection 

Another version of card marking matches a logical card to a page of virtual mem

ory. It uses the page protection mechanism of the operating system to detect all stores 

to these pages. All the pages are first protected from storing. When a store occurs to 

a page, the trap handler dirties the card and unprotects the page. Subsequent stores to 

this page incur no extra overhead. Page trapping performs poorly in comparison to card 

marking because pages are general1y too large and thus they fail to reach the optimum 

card size [8h,'1\'/ 87; Hosking 92]. 

As mentionned in Chapter 2, al! these strategies force the al!ocator to place objects 

within the boundaries of a cardo We must ensure that the first word of a card is a header 

word which allows collection. There is unused space at the end of each cardo The object 

size is also bounded by the card size. Systems using these strategies need to scan more 

space in order to find the roots. These strategies force the collector to trace all the 

marked cards completely, unlike the technique we propose in Chapter 4. 
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11.3 Large Object Space 

In [Caudill 86], the authors are among the first to work on LOS. They introduced 

the term large object space in the literature. They propose a garbage collector which 

represents large array objects with a small header object called a proxy. They use a 

free list to allocate large objects but do not clearly report how the LOS is collected or if 

the LOS is even collected at ail. It is unclear how large an object should be before it is 

included in the LOS. Moreover, they do not point out whether data containing pointers 

could be included in the LOS. 

Ungar and Jackson [Ungar 92] simulated a system that represents pointer-less 

objects in the heap with proxies. Objects larger than 1024 bytes are considered large 

objects. The authors write that for their study large objects are not longer lived than 

smaller ones. They do not implement a LOS collector in their simulation. Further, they 

do not give details of the LOS implementation they added to ParcPlace Smalltalk. 

In [Hud~on 91], the authors propose a system that divides the heap into many 

blocks. Objects larger than a block are allocated to the LOS. These blocks are of 

variable sizes. Consequently, the authors stipulate the heuristic that objects larger than 

8 kb should be allocated to the LOS. The latter is collected using a treadmill style 

collector [Baker 92] and is never compacted. Treadmill collectors use segregated free 

lists to allocate and reclaim memory in constant time but at the cost of under-utilizing 

memory, pOOl' locali ty, and fragmentation [Lirn 98]. 

1104 Depth-first Pointer Traversai 

Depth-first pointer traversa1 is usually implemented as a recursive algorithm which 

uses stack space proportional to the longest path in the graph of ail reachable objects. 

In [Schorr G7], the authors present the Deutsch-Schorr-Waite pointer reversai algorithm 

which use a pointer inversion technique to avoid management of the stack during the 

traversai of ail accessible pointers. The algorithm builds an explicit stack and threads 
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this stack through the objects encountered while traversing ail the pointers. In addition 

to mar-king each object, the algorithm needs to record, for each object, the point within 

the object that is currently being marked. Consequently, two bits for every pointer on 

the heap are reserved for the garbage collection algorithm, increasing the space overhead. 

Many works have proved the correctness of the algorithm [I\owa.ltowf:iki 79; Gerhart 79; 

Lee 79]. Thomas [Thornaf:i 95] also proposes an algorithm for a recursive depth-first 

copying garbage collection with no extra stack. 

11.5 Conclusion 

In this chapter l we described sorne previous related works, and discussed the 

advantages and drawbacks of each work. 



Chapter XII 

FUTURE WORK AND CONCLUSIONS 

In this final chapter we discuss future work on the memory manager of SableVi'vI 

and present our overall conclusions. This chapter is structured as follows. In Section 

12.1, we discuss various future research avenues, and in Section 12.2, we present the 

overall conclusions of this thesis. 

12.1 Future Work 

12.1.1 Memory Manager Framework in the Field 

The first part of our future work consists of releasing the instrumented version of 

SableVi'vI publicly, gathering feedback from the research community, and establishing 

new research and development collaborations to share ideas and develop them further. 

We hope to attract and develop collaborations between SableVM and other re

search projects for building a stable, robust, extensible, and efficient memory manager. 

We believe that our work on building an extensible memory manager research infras

tructure can benefit others, and enable them to develop and improve their own methods 

of research to concentrate their development efforts only on chosen specialized areas. 

We also hope to attract graduate students to work specifically on improving parts 

of the memory manager by implementing existing and innovative techniques. For exam

pie, the current heap allocator of SableVM is a naive contiguous allocator. Improving 
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SableVM's aliocator is a suitable project for early graduate courses covering garbage 

collection and memory management [Gagnon 03h]. 

12.1.2 Profiling Memory Usage 

Developers often make memory leak tracking a low priority because common 

language runtime takes care of garbage collection. What few developers realize, however, 

is that both the collection and allocation behaviour of their program affect memory 

manager performance. 

A longer term project is to build a complete memory profiling framework on 

SableVM. This memory profiling framework could be used as a tool for both researchers 

and Java developers to better understand memory usage, and more specifically garbage 

collection in Java programs [Cagnon o:3b]. This would be useful for detecting the causes 

of memory leaks, memory management technique inefficiencies, and pOOl' runtime per

formances of application. 

In general, more careful studies of issues concerning application programs would 

be a good complement to our memory manager studies and we would hope to pursue 

this avenue in the future. 

12.1.3 Investigating Deeper Garbage Collection Techniques 

The primary limitation of our current work is the small set of heaps sampled. 

Over time we expect to gather heaps from a wider range of applications. This will allow 

for a better validation and application of our results. 

12.1.4 Selecting Garbage Collectors Based on Dynamic Observation 

Several runtime systems now offer a choice of multiple garbage collectors. Eventu

ally we can expect our memory manager to select a garbage collector based on dynamic 

observation of the programs that the machines execute. 
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12.2 Conclusions 

In this thesis, we have introduced our memory manager research framework. One 

objective of our research was to design and impiement a portable and easily modifiable 

memory manager that could be used for research on various aspects of Java bytecode 

execution. We also wanted to evaluate the performances achievable by such an extensible 

framework. 

More specifically, in this thesis we introduced the bounded frame marking tech

nique for pointer-tracking, to allow the efficient computation of the root set. Our exper

iments show that the bounded frame technique reduces both the tracing costs and the 

space overhead of traditional methods, and even generates competitive performances on 

many benchmarks. 

We also introduced a depth-first object traversai algorithm that exploits the bidi

rectional object layout, and eliminates the space overhead caused by a recursive stack. 

We described the implementation of a method to copy objects in a depth-first order 

without space overhead. Our experiments show that, exploiting the static class-oblivious 

copying orders (e.g., breadth-first and depth-first), we can tune the memory layout to 

program traversai and thus improve performance, instead of always using the same static 

copying order. Our results show that our depth-first traversai algorithm generates better 

locality on almost all benchmarks, yielding improvements in performance. 

We further described the implementation of a method to mark objects without 

space overhead. This method guarantees that colleetors will collect all garbage. Future 

work should show that our method can improve performance by reducing copying costs. 

Finally, we described our large object policy that regroups large objects in memory 

and makes assumptions about their lifetime. Our experiments show that segregating 

large objects enables collectors to achieve better performances. 

The portability of our memory manager framework was demonstrated by the 

simplicity of implementing novel collectors. In particular, implemening the breadth
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first semi-space col!ector took less than 24 hours and less than 400 lines of code. 

We hope that these findings and developments shal! inspire and stimulate other 

members of the community in their efforts to develop better and more efficient garbage 

col!ectors. 
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