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RÉSUMÉ 

La géométrie complexe généralisée est une généralisation de la géométrie complexe 

obtenue en considérant des structures complexes sur le fibré généralisé T EB T*, 

plutôt que sur le fibré tangent T. Cette géométrie nouvellement définie fournit 

un language unificateur pour la géométrie complexe et symplectique puisqu'elle 

contient chacune d'elles comme cas spécial. On étudie une classe d'exemples non­

triviaux de structures complexes généralisées: les structures complexes généralisées 

invariantes à gauche sur des groupes de Lie nilpotents. On montre que toutes les 6-

nilvariétés admettent des structures complexes généralisées. En suivant les travaux 

de (Cavalcanti et Gualtieri, 2004), on présente la classification des 6-nilvariétés 

selon le type de structures complexes généralisées invariantes à gauche qu'elles 

admettent. De plus, on montre que les structures complexes généralisées invariantes 

à gauche sont en correspondance biunivoque avec les structures hermitiennes sur le 

fibré cotangent d'un groupe de Lie (par rapport à la métrique star:idard naturelle). 

On utilise ensuite cette correspondance ainsi que les résultats de ( de Andrés et al., 

2007) pour déduire que l'algèbre cotangente d'une algèbre de Lie six dimensionnelle 

quelconque admet une structure hermitienne. 

MOTS-CLÉS: structure complexe généralisée, structure complexe, structure sym­

plectique, structure hermitienne, nilvariétés. 



ABSTRACT 

Generalized cornplex geornetry is a generalization of cornplex geornetry obtained 
by searching for complex structures on the generalized bundle T EB T*, rather than 
the tangent bundle T. The newly defined geometry provides a unifying language 
for complex and symplectic geometry because it contains each of them as a special 
case. We study a class of non-trivial examples of generalized cornplex structures: 
left-invariant generalized cornplex structures on nilpotent Lie groups. We show 
that all 6-nilmanifolds admit generalized cornplex structures. We present the 
classification of 6-nilmanifolds according to which type of left-invariant generalized 
complex structure they admit, following the work of (Cavalcanti et Gualtieri, 2004). 
In addition, we show that the left-invariant generalized complex structures are in 
one-to-one correspondence with the Hermitian structures on the cotangent bundle 
of a Lie group (with respect to the standard natural metric). We then use this 
correspondence together with the results of ( de Andrés et al., 2007) to derive 
that the cotangent algebra of any six dimensional Lie algebra adrnits a Hermitian 
structure. 

keywords: generalized complex structure, complex structure, syrnplectic 
structure, Herrnitian structure, nilmanifold. 



INTRODUCTION 

Unlike classical differential geometry where we define structures in the tangent and 

cotangent bundles, in generalized geometry we replace the tangent bundle with the 

direct sum of the tangent and the cotangent bundle, and we deal with differential 

1-forms and vector fields on an equal basis. Generalized geometry was initiated 

by (Hitchin, 2003) and developed by (Gualtieri, 2004). It is basically defined in 

terms of two abjects. First, an orthogonal structure coming from the natural 

split-signature inner product on the vector bundle T E9 T*. Second, a bracket of two 

generalized vector fields called the Courant bracket. This bracket provides varions 

geometric structures with their integrability condition. The symmetry group of the 

defined geometry is a very large group and contains more than just diffeomorphisms. 

The extra symmetries are B-field transformations generated by closed 2-forms. 

Accordingly, any type of structure defined in this generalized geometry can be 

transferred either globally by diffeomorphisms or locally, by B-fields. 

Generalized complex geometry is a straightforward generalization of complex ge­

ometry where we search for complex structures on the bigger generalized bundle 

T E9 T*. This generalization is characterized by the way it unifies complex and 

symplectic geometries, since bath are extremal special cases of the generalized 

complex geometry. 

There are different ways to produce exotic examples of generalized complex struc­

tures; in particular, examples on manifolds which admit no complex or symplectic 

structure. These ways include searching for them on symplectic fibrations and Lie 

algebras, or doing a surgery procedure. In this dissertation we are concerned mostly 
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with left-invariant generalized complex structures on nilpotent Lie groups, which 

are equivalent to integrable linear generalized complex structures on their nilpotent 

Lie algebra. In the study carried out by (Cavalcanti et Gualtieri, 2004), the authors 

have found obstructions on nilmanifolds to admit an invariant generalized complex 

structure based on data encoded in the corresponding Lie algebra: the nilpotence 

step and the dimension of the spaces forming the descending central series. Based 

on that, they presented a classification of invariant generalized complex structures 

on 6-nilmanifolds; they all admit generalized complex structures including five 

examples that admit no symplectic or invariant complex structures. 

Lie algebra examples are of particular interest due to the fact that the Courant 

bracket on a Lie algebra is equivalent to the Lie bracket on the cotangent algebra. 

Therefore, finding a generalized complex structure on a Lie algebra is equal to 

giving a complex structure on the cotangent algebra. In (de Andrés et al., 2007), 

it was proved that left invariant generalized complex structures on a Lie group 

are in one-to-one correspondence with the invariant Hermitian structures on the 

cotangent Lie group. Using this correspondence, it follows that the cotangent 

algebra of any 6-dimensional Lie algebra admits a Hermitian structure. 

We begin in the first chapter with the basic settings for the generalized geometry. 

This includes a highlight of geometric structures at the level of vector spaces, and 

a study of the linear algebraic aspects of V œ V*. Then we define the generalized 

complex structure at the level of vector spaces. 

In chapter 2, we transfer all the linear algebraic properties studied on V œ V* to 

a 2n-manifold. We see that the generalized vector bundle T EB T*, equipped with 

the same inner product and orientation as described on V œ V*, has a natural 

structure group SO (2n, 2n). On generalized tangent space, we define a linear 

generalized complex structure. To find the holomorphie chart of the generalized 
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complex manifold, we need an analogue of the Newlander-Nirenberg integrability 

theorem for the generalized case. For this reason, we define the Courant bracket on 

the sections of T EB T* and formulate a generalized integrability condition in terms 

of this bracket. Defining a generalized complex structure on a 2n-manifold reduces 

the structure group of T EB T* from SO (2n, 2n) to the indefinite unitary group 

U (n, n). Following the presentation of (Gualtieri, 2004), we describe the algebraic 

consequences of having an almost generalized complex structure, as well as the 

topological obstruction toits existence. This obstruction is the same as the one for 

an almost complex structure or a non-degenerate 2-form to exist. Furthermore, we 

describe the action of a generalized complex structure on differential forms. 

In chapter 3, we begin with a section on Lie algebras and Lie groups. Then, we study 

left invariant generalized complex structures on Lie groups and we relate them to 

Hermitian structures on cotangent Lie groups. In this chapter, we follow ( de Andrés 

et al., 2007), where they proved that the Courant bracket, when restricted to left 

invariant vector fields and left invariant 1-forms, is given by a special equation. 

Consequently, they established a correspondence between invariant Hermitian 

structures on T*G and left invariant generalized complex structures on G. After 

that, we define what a nilmanifold is. We then state the results of (Cavalcanti et 

Gualtieri, 2004) about generalized complex structures on nilmanifolds in arbitrary 

dimensions, and the classification of left-invariant generalized complex structures 

on 6-dimensional nilmanifolds. Finally, We conclude with the fact that when a 

6-dimensional Lie group Gis nilpotent, the cotangent bundle T*G has a Hermitian 

structure. 



CHAPTER I 

BASIC SETTINGS OF GENERALIZED GEOMETRY 

Much of the geometry of manifolds can be described in terms of vector bundles, 

which associate a vector space to each point of the manifold in a continuous way. 

Therefore, we begin in the first section of this chapter with a highlight of the linear 

algebraic aspects of vector spaces before fibering them on a manifold. A study of 

the natural split-signature orthogonal structure on V EB V* follows in the second 

section, as we define a generalized complex structure on the sum of cotangent and 

tangent bundles. We then define the notion of generalized complex structure on a 

real vector space, where complex and symplectic structures can be seen as extremal 

cases of a more general structure. 

1.1 Linear algebra of V 

1.1.1 Complex structures and complexification 

This section contains two basic operations: extension and restriction of the field of 

scalars of vector spaces. 

Definition 1.1.1. A complex structure on a finite-dimensional real vector space 

Vis a linear endomorphism J of V (JE EndIR(V)) such that J 2 = -[; [:V-+ V 

being the identity. 



5 

Since det(J2) = det(-Il) = (-ntmv -=1- 0, J is an invertible endomorphism. The 

existence of a complex structure J on a real vector space V implies that V is of 

even dimension. Indeed, [det(J)]2 = det(J2) = det(-Il) = (-1tmv, then dimV 

should be even. 

A pair (V, J), where V is a real vector space and J is a complex structure on V, 

can be turned into a complex vector space Vc by defining scalar multiplication by 

complex numbers as follows: 

Vv E Vc: (a+ib)v = av +bJ(v);a,b E IR 

Proposition 1.1.2. There exists a basis { e1, ... , en} for Vc such that 

is a basis of V. In particular 

dimcVc = ~dimn~Y 

Proof. V is a real vector space of even dimension 2n. We construct the following 

flag in the fini te dimensional space V: Lo = { 0} and L1 = span { e1}. Since J2 = -1 

, e1, J(e1) are linearly independent, then we can set L2 = span{e1, J(e1)}. Indeed, 

J(e1) E L2\L1 and span{e1} Cspan{e1, J(e1)}. This flag can be extended up to 

the maximal flag in V, which has length dimV. This can be clone by inseiting 

intermediate subspaces into the starting flag as long as it is possible to do so. 

By induction on the dimension 2n, e1, J(e1), ... , en, J(en) are linearly independent. 

Hence, the length of the maximal flag cannot exceed 2n. We have 

n n 

Vv EV: v = Laiei + L bô(ei); ai, bi E lR 
i=l i=l 
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, So using the scalar multiplication of the complex vector space Vc, we obtain 

n 

Vv EV: v =:~::)ai+ ibi)ei 
i=l 

, so { e1, ... , en} is a basis of\/;:. D 

Conversely, given a complex vector space V of complex dimension n, there exists a 

linear endomorphism J of V, ( J E End~ (V)) defined by: J v = iv; \:/v E V. This 

endomorphism J is linear over R 

. Moreover, J satisfies the condition J 2 = -Il. 

Jv = iv =} J 2 = i(iv) = -v;\:/v EV 

. If we consider V as a real vector space, then J is a complex structure of V, which 

we call the canonical complex structure with Vc being the corresponding complex 

space. 

Let J be a complex structure for V, then -J: V-+ Vis also a complex structure, 

and is said to be the complex structure conjugate to J. 

Example 1.1.3. (canonical complex structure of IR2n) 

Consider the complex vector space of n-tuples of complex numbers en = {z = 

(z1, ... , zn) lzk E C for all k }. Given z E en and setting zk = xk + iy\ xk, yk E IR 

for all k = l, ... , n. We can identify en over e with JR2n over R In terms of the 

natural basis of JR2n, the canonical complex structure J0 is given by 
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Proposition 1.1.4. Let J and J' be two complex structures on real vector spaces V 

and V' respectively. If we consider V and V' as complex vector spaces in a natural 

manner, then a real linear map f of V into V' is complex linear if and only if 

J' 0 f = f O J. 

Proof Denote !R for f E Homm.(V, V'), Je for f E Homc(V, V') . 

We have Je is complex linear # fe(iv) = ifR(v) ; Vv E V # fe(iv) = fR(Jv) = 

J'JR(v) = ifR(v) # (J' o J)(v) = (f o J)(v) # J' of= f o J. The commuting 

condition is also sufficient, because it automatically implies that fe is complex 

linear. D 

Example 1.1.5. {The real representation of GL(n, C)) 

GL(n, C) can be identified with the subgroup of GL(2n, JR) consisting of matrices 

which commute with the canonical complex structure J0 , i.e. there is an injective 

map: 

p: GL(n,C) c...+ GL(2n,1R) 

A+iBt-----+ ( A B) ;A+iBEGL(n,C),A,BEM(n,JR), 
-BA 

which called the real representation of G L( n, C). 

A complex structure is equivalent to a GL(n, C)-structure, since there is a natural 

one-to-one correspondence between the set of complex structures on JR2n and the 

homogeneous space GL(2n, JR)/GL(n, C). 

Proposition 1.1.6. Let J be a complex structure on a real vector space V. A real 

vector subspace V' of V is invariant by J if and only if V' is a complex subspace of 

Vc. 
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Proof. J is the multiplication by ion Vc . Let U C Vc, then U is J-invariant if and 

only if (a+ ib)u EU; a+ ib E (C D 

Another way to extend the real field of a vector space to a complex one is the 

complexification vc, in which we represent the complex vector space as the direct 

sum of two real vector spaces, the "real and imaginary parts" vc = V E9 V. 

Let V be a finite-dimensional real vector space, we can always find the complex 

structure JE EndR(V E9 V) defined as follows: 

Indeed, 

J:VE9V--+VE9V 

Vv1,v2 EV: J(v1,v2) = (-v2,v1) 

::::} J2(v1,v2) = J(J(v1,v2)) = J(-v2,v1) = (-v1,-v2) = -(v1,v2) 

::::} J2 = - ll. 

Definition 1.1. 7. A complexification vc of a finite-dimensional real vector space V 

is the complex vector space (V E9 V)c associated with the above complex structure 

J. 

Identifying V with the subset of vectors of the form ( v, 0) E V E9 V and using the 

fact that i(v, 0) = J(v, 0) = (0, v), we can write the following: 

V(v1,v2) E vc: (v1,v2) = (v1,0) + (O,v2) = (v1,0) + i(v2,0) = V1 +iv2 

=}Ve= V E9 iV. 

Remark 1.1.8. Any basis of V over IR is a basis of vc over C, so that: 
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Similarly, if f : V --+ W is a linear mapping of real vector spaces, the complexifi­

cation of the mapping f, is a mapping Je : ve --+ wie defined by: 

Clearly, Je is linear over IR and commutes with J: 

Therefore, it is complex linear. Moreover, it is easy to check the following: lic = 

lI, (af + bgt = ar + bgc; a, b E IR, (f o gt = r o gc. 

Remark 1.1.9. There exists a canonical isomorphism between vie and V ®JR C 

V ®JR C ~ vie 

v ® z H (9î:c(z)v, Jm(z)v). 

V is a real subspace of V ®R C in a natural manner, 

i:VYVe 

vHv®l. 

More generally, r; (V) is also a real subspace of the space of tensor r; (Ve) in a 

natural manner. 

i: r;(v) Y r;(vie) 

V1 ® ... ® Vr ® v1 ® ... ®vs H (v1 ® 1) ® ... ® (vr ® 1) ® (v1 ® 1) ®®(vs® 1) 

Every complex vector space W has a real form WR called decomplexification, 

this is obtained simply by ignoring the multiplication of vectors in W by ail 

complex numbers, and retaining only the multiplication over IR. In this case 

dimRWR = 2dimieW. 
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Definition 1.1.10. Let W be an n-dimensional complex vector space. A real 

structure on W is an endomorphism of WIR, cr, such that: 

• cr[(a + ib)w] = (a - ib)cr(w); Vw E W; 

• cr2=Ilw. 

Proposition 1.1.11. Any real structure cr on W defines an n-dimensional subspace 

V,,.= {w E WJR: cr(w) = w} where v,,.ic ~W. 

Proof. Let e1, e2 , •.• , en be a basis of the complex vector space W. We set Ei = 
e;+o-(e;) th E E E . t"ll b . I f t 

2 , en 1, 2, •.. , n 1s s 1 a as1s. n ac , 
n 

Vw E W: w = ~)ai +ibi)Ei 
i=l 

= t,(ai + ibi) ( ei + ;(ei)) 

1 ( n n ) 
2 ~(ai+ ibi)ei + ~ cr[(ai + ibi)ei)] 

1 ( n n ) 
2 ~(ai+ ibi)ei + ~(ai - ibi)cr(ei) . 

In particular, if w E V,,. : cr(ei) = ei. i.e., (a+ ib) = a - ib = (a+ ib). Thus, the 

coefficient a + ib is real and Vic = span!R { Ei}. D 

Proposition 1.1.12. Given (Vc, cr), there is a unique U Cie Ve such that uic = Vc 

Let V be a real 2n-dimensional vector space with a complex structure JE EndJR(V). 

Then J can be uniquely extended to a complex linear endomorphism of vc also 

denoted by JE HomlR(Vic) as follows: 

J : vie --+ vie 

J = J ® Ile. 
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The eigenvalues of the extended J are therefore +i and -i. We set: V1•0(J) = 

{ z E vie; J z = iz} which is the eigenspace of the eigenvalue +i, and its vectors 

are called vectors of type (l, 0). And V0•1(J) = {z E vie; Jz = -iz} which is the 

eigenspace of the eigenvalue -i, and its vectors are called vectors of type (0, 1). 

There is an induced complex structure on the dual vector space. Let V be a 

finite-dimensional real vector space, and V* its dual. A complex structure J on V 

induces a complex structure on V*, also denoted by J, as follows: 

(Jv,v*) = (v,Jv*);v E V,v* EV*. 

where V x V* -----+ K is the canonical pairing. Indeed, 

Vv EV, v* EV* 

J 2 ( v*) = (v, J 2v*) = (Jv, Jv*) = (J2v, v*) = (-v, v*) = -(v, v*) = -v*. 

;Vv E V,v* EV* 

Similarly, the complexification (V*f is the dual vector space of vie. Consider the 

dual vector space V* of the real vector space V consisting of all linear fonctions 

v*: V-+ lî. The value of v* EV* at v EV is denoted by either v*(v) or (v, v*). 

(V*f maybe identified with the complex vector space of all linear fonctions: 

v* + iw* : V -+ C; 

v H (v* + iw*)(v); 'iv EV, v* + iw* E (V*f 

(V*f = V*®RC ~ V*®RC* ~ (V®RC)* = (VIC)* 

=? (V*f = (VIC)* = (V1·0 E9 v1·0)* = Vi,o E9 Vo,1-

The elements of type (1, 0) in (V*f are those fonctions v* : V -+ C for which 

Jv*(v) = iv*(v), 'iv E V. Similarly, the elements of type (0, 1) are those v* for 
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which v*J(v) = -iv*(v);\iv EV, then we can conclude that vectors in (V*f admit 

a direct sum decomposition into complex conjugate subspaces, 

(V*f = Vo,1 E9 Vi.,o; 

Vi.,o = {x* E (V*f; (x,x*) = O;\ix E v0•1}; 

Vo,1 = {x* E (V*f; (x,x*) = O;\ix E V1•0}. 

The tensor product space r;(vc) can be represented as a direct sum, 

The exterior algebras A Vi.,o, AV0,1 considered as sub-algebras of A(V*f in a natural 

manner: 

AVi.,o c....+ A(Vi.,o E9 Vo,1); 

AVo,1 c....+ A(Vi.,o E9 Vo,1)-

Proposition 1.1.13. The exterior algebra A(V*f decomposes as follows, 

n 

A(V*f = E9( EB Ap,q(V*f). 
r=O p+q=r 

Moreover, the complex conjugation in (V*f, extended to A(V*f in a natural 

manner, gives a real linear isomorphism 

Let { e1, ... , en} be a basis for Vi.,o, then { ë-1, ... , e'1'} where ek = ek, is a basis of Vi.,o 

( using lemma 1.1). Moreover, the set of elements { é /\ ... /\ eJp /\ ek1 /\ ••• /\ éq l 1 ::; 

j 1 < ... < jp, 1 ::; k1 < ... < kp ::; n} forms a basis for AP,q(V*f over C. 
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Remark 1.1.14. The complex structure induces an orientation on the vector spaces 

equipped with. The class of ordered bases, 

{[e1, ... , en, J(e1), ... , J(en)l, [e~, ... , e~, J(e~), ... , J(e~)], ... } 

determines one equivalence class of the two possible orientations, which we called 

the orientation induced by the complex structure J. 

1.1.2 Symplectic structures 

In this section, we define symplectic vector spaces, linear symplectomorphisms and 

the symplectic linear group. 

Definition 1.1.15. A symplectic structure w on a finite dimesional vector space 

V is a non-degenerate skew-symmetric bilinear mapping w : V x V -+ R 

The bilinear form w induces a linear map w : V -+ V* via w( v) := ( v, •) ; Vv E V 

and so w( u, v) = ( w( u), v) . This induced linear map is an isomorphism if and only 

if the bilinear map is non-degenerate. Since w is skew-symmetric, w* = -w. This 

allows to view a symplectic structure on V as an isomorphism w : V -+ V* satisfying 

w* = -w, where w* is the linear dual of the mapping w. i.e, w* : (V*)* = V-+ V*. 

The existence of a symplectic structure w on a real vector space V implies that V 

is of even dimension. Indeed, w* = -w. Taking determinants, det(w*) = det(w) = 
(-l)dimV det(w), Thus dimV is even. 

As in the more familiar Euclidean case, we can define a w-orthogonal spaces of V. 

Let (V, w) be a symplectic space, and W c V, its symplectic orthogonal subspace 

ww is defined by: 

ww = {v EV I w(v,w) = 0 ;Vw E W}. 
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Note that one might have ww c W, i.e, Wnww =I {0}. The symplectic complement 

has the following properties: 

1. dimW + dimWw = dimV 

Definition 1.1.16. : Let (V,w) be a symplectic space. A subspace WC Vis 

called 

• sympleetie or non-degenerate if w lw is non-degenerate. i.e, if (V, w lw) is a 

symplectic space. 

• isotropie if w lw= O. i.e, if ww Ç W. 
• eoisotropie if ww 2 W. 

• maximal isotropie or Lagrangian if ww = W. 

From the properties of the symplectic complement we can see that a subspace 

W c V is symplectic if and only if ww is symplectic. In addition, the dimension 

of any maximal isotropie subspace is half of the dimension of V, W is isotropie if 

and only if ww is coisotropic. 

Using a skew-symmetric version of Gram-Schmidt, we can prove by induction 

on the dimension n that there is always a basis { e1 , ... , en, e~, ... , e~}, called the 

sympleetie basis such that: 
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Indeed, since w is non-degenerate, there exist e1, e~ E V such that w(e1, eD = 1. 

It follows that the subspace spanned by e1 , e~ is symplectic. Then (Ww, w) is a 

symplectic space of dimension 2n - 2. By the induction hypothesis, there exists a 

symplectic basis { e2 , ... , en, e;, ... , e~} of ww. Thus, the vectors e1 , ... , en, e~, ... , e~ 

form a basis of V. 

This symplectic basis has a matrix of the form: 

which is exactly the matrix J0 that gives the canonical complex structure on JR2n. 

Example 1.1.17. ( canonical symplectic structure of JR2n) 

Identify JR2n with ]Rn x ]Rn, label the canonical basis by Pl, .. ,,Pn, q1, ... , qn, Let 

Pi, ... ,p~, qt, ... , q~ be the dual basis of V*. Then we get the symplectic space 

(1R2n,wo) where: 
n 

Wo = LPJ /\ q;. 
j=l 

Example 1.1.18. Let V be a real or complex vector space. Then V EB V* has a 

canonical symplectic structure given by the form: 

w((v,a),(u,,B)) = ,B(v)-a(u) ;a,/3 EV*, u,v EV. 

If we identify JR2n with ]Rn x (JRn)* then the previous example gives us the canonical 

symplectic form on JR2n. 

Definition 1.1.19. A linear symplectomorphism 'P between two symplectic spaces 

(Vi, w1) and (li;, w2 ) is a vector space isomorphism 'P : Vi -+ li; which pre­

serves the symplectic structure in the sense that <p*(w2 ) = w1 . i.e, w1(u.v) = 

w2 (<p(u), 'P(v)), Vu, v E Vi. If a linear symplectomorphism exists, the two spaces 

said to be linearly symplectomorphic. 
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Theorem 1.1.20. {linear Darboux's theorem) 

Two symplectic spaces of the same dimension are linearly symplectomorphic. 

The relation of being symplectomorphic is an equivalence relation on the set of 

all even-dimensional vector spaces. Furthermore, by linear Darboux's theorem, 

every 2n-dimensional symplectic vector space is symplectomorphic to (IR2n, w0). 

Hence, non-negative even integers classify equivalence classes for the relation of 

being symplectomorphic. 

Example 1.1.21. Let (V, w) be a symplectic space, then an endomorphism cl> : V-+ V 

is a linear symplectomorphism if and only if its graph I',i:, = {(v, <j>(v)) 1 v EV} 

is maximal isotropie in (V E9 V, -w E9 w) where -w E9 +w denotes the difference 

-1riw + 1r2w of the pullbacks of w along the two canonical projections 1r1, 1r2 

V œ V-+ V. 

Example 1.1.22. Let (V, w) be a symplectic space, cl> : V-+ V* an endomorphism. 

The graph r ,i:, = { ( v, cl>( v)) 1 v E V} is maximal isotropie in (V E9 V*, w) if and only 

if cl> is symmetric: cI>(v)(u) = cI>(u)(v), Vu, v EV, and where w is the symplectic 

structure described in example 1.1.18. This shows that maximal isotropie subspaces 

of V are in one to one correspondence with the quadratic forms of V*. 

Lemma 1.1.23. A bi-linear skew-symmetric form won v2n is non-degenerate if and 

only if its n-th exterior power A nw is non-zero. 

Proof. Assume first that w is degenerate. Let v -=1- 0 such that w(v,u) = 0, Vu E 

V. Choose a basis V1, ... , V2n for V such that V1 = v, then A2n(v1, ... , V2n) = O. 

Conversely, suppose that w is non-degenerate, then since A nw0 is a volume form in 

JR2n, it follows from linear Darboux's theorem that A nw -=1- O. D 

The set of all isometries (linear symplectomorphisms) of a symplectic space forms 

a group. The set of matrices in Gl(2n, IR), representing this group in a symplectic 
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basis is called the symplectic group Sp(2n, JR). In the view of Darboux's theorem, 

all symplectic vector spaces of the same dimension are isomorphic, so it suffices 

to consider the case V= JR2n with the canonical symplectic form w0 • In this case 

Sp(2n) = Sp(2n, JR) = Sp(JR2n, w0 ) is a real 2n x 2n matrices A which satisfy the 

condition AT J0A = J0 so that detA = =fl. By lemma 1.1.23, any symplectic space 

has a non-vanishing volume foim, and soit is orientable and detA is always +l. In 

the complex case Sp(2n, C), we may identify JR2n with en, then the multiplication 

by J0 in JR2n corresponds to multiplication by i in en. With this identification the 

complex linear group Gl(n,C) is a subgroup of Gl(2n,JR), and U(n) is a subgroup 

of Sp(2n). The following proposition describes the connection between symplectic 

and complex linear maps. 

Proposition 1.1.24. 

Proof. 

U(n) = 0(2n) n Sp(2n) = Gl(n, C) n Sp(2n) = Gl(n, C) n 0(2n) 

A E Gl(n, C) # AJo = JoA 

A E Sp(2n) # AT J0A = J0 

A E O (2n) # AAT = IT 

Any two of these conditions implies the third. Also 

( B -C) A E 0(2n) n Sp(2n) #A= C B E Gl(2n, JR) 

which commutes with J0 , and this is exactly the condition on U = B + iC to 

be unitary. That is a linear map that preserves both orthogonal and symplectic 

structure on a vector space, will preserve the Hermetian structure induced by them 

on it. D 



18 

1.1.3 Hermitian structures 

Definition 1.1.25. A Hermitian structure on a complex vector space V is a 

Hermetian inner product which is an IR-bi-linear map, H: V x V---+ <C satisfying 

the following properties: 

• H(v, w) = H(w, v) 

• H(v,v) > O; v =/-0. 

• H(iv,w) = -H(v,iw) = iH(v,w) 

A complex vector space V equipped with a positive-definite Hermitian structure 

called a Unitary space. 

Hermitian structures in a unitary space V do not coinside with orthogonal structures 

in Vni. From a real perspective, it make sense to split the Hermitian structure over 

the real numbers into its real and imaginary part, which are separately IR-linear: 

h = 9tc(H), w = Jm(H) 

Each of these two parts is non-degenerate, h is symmetric whereas w is antisym­

metric. Hence, h determines an orthogonal structure on Vit, and w determines a 

symplectic one. Both of these structures are invariant under multiplication by i, 

that is, the canonical complex structure on VR: 

h(iu, iv) = h(u, v), w(iu, iv) = w(u, v) 

The two structures are related by the following relation: 

h(u, v) = w(iu, v), w(u, v) = -w(iu, v) 

Moreover, h is positive-definite if and only if w is. 
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Definition 1.1.26. A Hermitian inner product on a real vector space V with a 

complex structure J is an inner product h such that 

Vv EV: h(Jv, v) = 0 Indeed, 

h(Jv, v) = h(J2v, Jv) = h(-v, Jv) = -h(v, Jv) = -h(Jv, v) 

Proposition 1.1.27. Let h be a Hermitian inner product on a 2n-real dimension 

vector space V with a complex structure J. Then there exist elements e1, ... , en of 

V such that { e1 , ... , en, Je 1 , .•• , Jen} is an orthonormal basis for V with respect to 

the inner product h. 

Proof. Let e1 to be the unit vectàr, { e1, J e1} would be an orthonormal and linearly 

independent set. Let W be the subspace spanned by e1 and Je1, and let W..L 

be the orthogonal complement V = WEB W..L. Then w1- is invariant by J, i.e., 

Vw E w1-, Jw E W..L; 

Vv E W, w E W..L: (Jw, v) = (J2w, Jv) = (-w, Jv) = -(w, Jv)::::} (Jw, v) = 0 

this shows that J is a complex structure on W .L. By induction oii the dimension 

2n of V, assume the proposition holds for W..L of dimension 2(n-1), then it has an 

orthonormal basis { e2 , •.. , en, Je2 , •.. Jen}- Since W .l_ W..L we can get the desired 

orthonormal basis. D 

Example 1.1.28. (Canonicat Hermitian inner product on JR2n) 

If ho is the canonical inner product on JR2n , i.e., the inner product with respect to 

which the natural basis of JR2n is orthonormal, then ho is a Hermitian inner product 

for JR2n with the canonical complex structure J0 of 1R2n. 
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There is a natural one-to-one correspondence between the set of Hermitian inner 

products in JR2n with respect to the canonical complex structure J0 and the 

homogeneous space GL(n, C)/U(n). 

The Hermitian inner product h in (V, J) can be extended uniquely to a complex 

symmetric bi-linear form, denoted also by h of vc such that 

l. h(z,w) = h(z,w);Vz,w E vc 

2. h(z, z) > O; Vz E vc - {O} 

3. h(z, w) = O; \;fz E v1,o, w E v0,1 

Conversely, every complex symmetric bi-linear form h on vc satisfying the previous 

properties is the natural extension of a Hermitian inner product of V. 

To each Hermitian inner product h on V with respect to a complex structure J, 

we associate an element <p of A 2V* as follows: 

ip(x,y) = h(x,Jy);Vx,y EV 

<p is skew-symmetric: 

ip(y, x) = h(y, Jx) = h(Jx, y)= h(Jx, -J2y) = h(x, -Jy) = -<p(x, y) 

<p is invariant by J: 

ip(Jx, Jy) = h(Jx, J2y) = -h(y, Jx) = -ip(y, x) = ip(x, y) 

Since A2V* can be considered as a subspace of A2V*c, <p may be considered as an 

element of A2V*c. In other words, t.p may be uniquely extended to a skew-symmetric 

bi-linear form on vc, denoted also by <p. 

If <p E A2V* the skew-symmetric bi-linear form on vc associated to a Hermitian 

inner product h of V, then t.p E A 1,1 V*c. 
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1.2 Linear algebra of V EB V* 

1.2.1 Symmetries of V EB V* 

We can define three classes of abjects on V as orthogonal symmetries of V EB V*. 

These three classes are: endomorphisms (the usual symmetries of V), 2-forms, and 

bi-vectors. We examine how these different classes act on V EB V*. 

Let V be an n-dimensional real vector space. The space V EB V* has a natural 

symmetric inner product defined by 

1 
(X+ ç, Y+ 17) = 2 (ç (Y)+ 17 (X)), X, Y E V, ç, 17 EV* 

Let e1, e2, ... , en be a basis of V, and let e1, e2, ... , en be the dual basis of V*. Then 

e1 + e1; e2 + e2, ... , en + en, e1 - e1, e2 - e2, ... , en - èn is a basis for V EB V* such that 

Thus (., .) is non-degenerate with signature (n, n), called split signature. The 

symmetry group of the structure (V EB V*,(.,.)) is therefore 

O(VEBV*) = {A E GL(VEBV*): (A.,A.) = (.,.)} '.:=O(n,n) 

Since we have on V EB V* the natùral orientation coming from the canonical 

symplectic structure 

1 
w (X+ a, Y+ /3) = 2 (/3 (X) - a (Y)) 

, we reduce the symmetry group to SO (n, n). The Lie algebra of SO(V EB V*) is 
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and so a skew-adjoint transformation T E so(V EB V*) = {T 1 (Tx, y) + (x, Ty) = 

0 x, y E V EB V*}, can be written in block-diagonal form as 

r-(; _:.), 
where A E End(V), B E /\2V, /3 E /\2 V*. Each part of the previous decomposition 

acts on V EB V*, and by exponentiation we obtain orthogonal symmetries of V EB V* 

in the identity component of SO(V EB V*). 

Let A E End (V) corresponds to 

TA = (A O ) E so (V EB V*) 
O -A* 

which acts on V EB V* as the linear transformation 

Since any transformation of positive determinant is eA for some A E End (V), we 

can regard GL + (V) as a subgroup of SO(V EB V*) , which we can extend to the 

full GL(V). Then the usual symmetries of Vis part of larger group of symmetries. 

The case of a 2-form BE /\2V*viewed as a map B: V--+ V* with B* = -B, which 

corresponds to 

TB - (: ~) ESo(V EB V') 

which acts on V EB V* as the linear transformation 

since T'Ji = O. i.e. eTs is the transformation sends 
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Thus B gives rise to an orthogonal transformation preserving projection onto V 

and act by shearing in the V* direction, which called B-field transformations. 

The case of a bivector f3 E A2V viewed as a map f3: V*-+ V, is the same as the 

2-form, let f3 corresponds to 

which acts on VE& V* as 

which is an orthogonal transformation preserving projection onto V~ and act by 

shearing in the V direction, which called (3-field transformations. The B-field 

action will be fondamental giving extra transformation in generalized geometry, 

which represent a breaking in the symmetry since the bi-vector f3 E A2V plays a 

lesser role. 

1.2.2 Maximal isotropie subspaces 

We have seen in Example 1.1.18 that the pairing V x V* --+ lR defines a symplectic 

structure, 
1 

w (X+ a, Y+ (3) = 2 (/3 (X) - a (Y)) 

In addition, we defined a maximal isotropie subspace L to be an isotropie subspace 

of maximal dimension, i.e. w (X, Y) = 0 \/X, Y E L. 

Since both subspaces V and V* are null under the pairing, they are examples 

of maximal isotropie subspaces. Another example is the graph r B of the map 

B : V --+ V*, rB = eB.V = {X+ ixB : X E V-}. Also for f3 : V* --+ V, The 
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space e.6.V* = {iç,B + ç : ç E V*} is maximal isotropie subspace. In general, 

VA E O(V EB V*) : A(V) is a maximal isotropie subspace of V EB V*. Maximal 

isotropie subspaces of V EB V* are also called linear Dirac structures. They provide 

an alternative splittings for V EB V*; If L, L' are any maximal isotropies such 

that Ln L' = 0, then the inner product define an isomorphism L' '.::='. L*. Thus, 

V EB V* = L EB L'. The space, of maximal isotropies is disconnected into two 

components, and elements of these are said to have odd or even type ( cf. Definition 

1.2.4) depending on whether their component intersect V or not. The following 

two examples are important. 

Example 1.2.1. Let E c V be any subspace of dimension d, and consider the space 

E EB Ann (E) C V EB V* where Ann (E) is the annihilator of E in V which have the 

dimension n - d. Then E EB Ann (E) is maximal isotropie subspace. 

Example 1.2.2. Let E C V be any subspace, and let 1: E A2 E* considering it as a 

map E-+ E* via X-+ ix1:. Consider the subspace analogous to the graph of 1: , 

L(E,1:) = {X +ç E EEB V*: ç IE= 1:(X)} 

Then for X + ç, Y + rJ E L ( E, E), 

1 1 
(X+ ç, Y+ ry) = 2 (ç (Y)+ 'rJ (X))= 2 (1: (Y, X)+ 1: (X, Y))= 0 

and so L ( E, E) is a maximal isotropie subspace. 

Remark 1.2.3. When 1: = 0, L (E, 0) = E EB Ann (E) which was the first example. 

In addition, L (V, 0) = V and L ( {O}, 0) = V*. 

If we define E = 1rvL, where 1rv is the projection V EB V* -+ V, then Ln V* = 

Ann(E) since Lis maximal isotropie. Also V* = E* / Ann(E) and soif we define 

E: E -+ E* 

e t-t 1rv• ( 1r i:} ( e) n L) E V*/ Ann ( E) 
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then every maximal isotropie L is of the form L (E, E). 

Deflnition 1.2.4. The type of a maximal isotropie L (E1 €), is the codimension k 

of its projection into V, 

k =ùimAnn(E) =n-dim1rv(L) 

Since B-transformations preserve projections to V, it does not effect E and so it 

does not change the type of the maximal isotropie. However, ,B-transformations 

do change the type of the maximal isotropie, since it change projections to V and 

therefore may change the dimension of E. 

1.2.3 Spinors of V EB V*, pure spinors 

A spin structure for the orthogonal structure on V $ V" is always exib'ts, and it is 

isomorphic to the exterior forms A·V*. We show that there is a correspondence 

between maximal isotropie subspaces and special types of spinors called pure 

spinors. 

We have the natural Cartan's action of V$ V* on S = /\•V*. If X+ {EV$ V* 

and p ENV*, let 

T~n 

(X+ ç) · p = ixp + ç A p 

(X +ç)2 • p - ix (ixp+{ Ap) +( A (ixp+( Ap) 

- {ix:ç)p- :ç f\ ixp+ :ç A ixp 

- {X +ç,X +ç)p 

Thus, Wë have an ootion of v E V$ V* wtth î?p = {v, v}p. This îs thë âëlintng 

relation for the Cllil'ord algebra CL (V@ V•) usîng the natural pairîng (.,.}on 

V$~. 
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The spin group Spin (V$ V*) c CL (V$ V*) is defined by 

Spin (V EB V*) = { v1 ... V2k : vi · vi = ±1; k E N} 

which is a double cover of the spacial orthogonal group 80 (V$ V*) via 

tp : Spin (V EB V*) -+ SO (V$ V*) 

</J(v)(X) J-t v·X·v- 1 ;vESpin(VEBV*),XEVEBV* 

This map identifies the Lie algebras spin(n, n) ~ so(n, n) ~ A2V $A2V* $End(V) : 

spin(n, n) -+ .so(n, n) 

d</J(v)(X) J-t [v,Xj = v · X - X· 11 

Above; we identify .spin(n, n) with elements of CL (V$ V*) of the form bi!i viv3; 

VJ.VJ = Jii Since the exterior algebra of V* is the space of spinors, each element in 

.spin( n, n) acts naturally on A •v* . 

Example 1.2.5. Let B = I: biiei A ei E A2V* be a 2-form. It acts on V$ V* via 

X+ ç J-t ix B this defines an element of so(n, n). The corresponding element in 

.spin(n, n) inducing the same action on VEBV* is given by Ebijelei E CL (V$ V*). 

It follows that the spinorial action of B on a form p is given by ~ bijei ei · p = - B /\ p. 

In a similar way we can see the Lie algebra action of a bi-vector 

Example 1.2.6. Let /3 = E(3ii~ A ej E A2V c .so(n,n), its action is given by 

(3 ·(X+ ç) i-t z~/3. And the corresponding element in .spin(n, n) with the sarne 

action is E f3i3ej~· So the action on a form pis given by (3 • p = ir3p. 

Let a be the anti-automorphism of CL (V $ V*) de:fined on decomposables by 
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Then we have the following bi-linear form on A •v* c CL (V EB V*) 

(6, 6) = (o- (6) /\ 6)top 

where top indicates taking the top degree component on the form. This bi-linear 

form called the Mukai pairing. The natural inner product on V EB V* extends by 

complexification to (V EB V*) 0 C. Now given p E A·V* 0 C , we can consider its 

Clifford annihilator 

Lp = {v E (V EB V*) 0 C: v · p = O} 

Since for v E Lp, 

Ü = v2 · p = (V, V) p 

thus LP is always isotropie. 

Definition 1.2.7. A form p ES= A-V* is pure if LP is maximal isotropie, i.e. if 

dimcLp = dim!R V. 

Given a maximal isotropie subspace L C V EB V*, we can always find a pure form 

annihilating it and conversely, if two pure forms annihilate the same maximal 

isotropie, they are multiple of each other. Thus, maximal isotropies are in one to 

one correspondence with lines of pure forms. Algebraically, the requirement of a 

forrn to be pure implies that it is of the form eB+iw n where B and w are bi-vectors 

and D = 01 /\ 02 /\ ... /\ ek is a decomposable complex k-vector. 

Example 1.2.8. Let p = e1 /\···/\en, then Lp = V* and pis a pure form. Take 

1 E A 0V*, then L1 = V, hence 1 is a pure spinor. 

1.3 Linear generalized complex structures 

Let V be a real vector space, and consider the direct sum V EB V*, 
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Definition 1.3.1. A generalized complex structure on V is an endomorphism 

:JE End (V E9 V*) which satisfies two conditions 

• It is complex, i.e. :72 = -TI. 

• It is symplectic, i.e :J* = -:J. 

If :72 = -TI and :J* = -:!, this is equivalent to :J* :J = TI which means that :J is 

an orthogonal choice of complex structure. Equivalently, a generalized complex 

structure can be defined on V as a complex structure on V E9 V* which is orthogonal 

in the natural inner product. 

Since :72 = -TI , it splits the complexification (V E9 V*) ® (C into a direct sum of 

±i-eigenspaces, Land L. Further, since :J is orthogonal, 

(u,v) = (:Ju,:Jv) = (iu,iv) = -(u,v):::} (u,v) = 0\lu,v EL 

and so L is maximal isotropie subspace with respect to the inner product. Con­

versely, specifying such an L as the i-eigenspace determines a unique generalized 

complex structure on V. Thus, a generalized complex structure on V of dimension 

n is equivalent to a maximal isotropie subspace L E (V E9 V*) ® (C such that 

LnL = {O}. 

Proposition 1.3.2. (Theorem 4.5 in (Gualtieri, 2004)) 

The vector space V admits a generalized complex structure if and only if it is of 

even dimension. 

Proof. Since the inner product on V E9 V* is indefinite, we can find v E V E9 V* 

such that (v, v) = O. Since :J is orthogonal complex structure :Jv is orthogonal 

to v and (:J v, :J v) = O. Thus, the subspace N = span{ v, :J v} C V E9 V* is an 
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isotropie subspace. We can extend N by adding pairs of vectors v' orthogonal to 

N with :1 v' until N becomes maximal isotropie. Since the inner product has split 

signature, dimN = dim V and so V must be of even dimension. D 

Remark 1.3.3. generalized complex structures reduces the structure from O (2n, 2n) 

to U (n, n) = 0 (2n, 2n) n GL (2n, C) 

An extra characterization of generalized complex structure on V can be obtained 

from the interpretation of forms as spinors. They can be determined by line of 

the complex differential forms. To any maximal isotropie we can associate a one 

dimensional space UL it annihilates. Since the generalized complex structure is 

given by the maximal isotropie L, it can equivalently determined by the pure spinor 

line UL C NV*@ (C generated by 

where n = 01 /\ · · · /\ ek, and the integer k is the type of the maximal isotropie as 

in Definition 1.2.4. 

Definition 1.3.4. We call the complex line UL the canonical line of the generalized 

complex structure, and the integer k the type of the generalized complex structure. 

Since L is the i-eigenspace of a complex structure, then Ln L = {O}. This 

intersection property can also be viewed from the pure spinors, using the Mukai 

bilinear form, 

Proposition 1.3.5. (Chevalley, 1997) 

Maximal isotropies L, L' satisfy dimL n L' = {O} if and only if their pure spinor 

representatives p, p' satisfy (p, p') i- O. 
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Therefore, determining a generalized complex structure on v 2n is equivalent to an 

additional constraint on the generator PL: 

(p, p) = w2n-2k (\ [l (\ {l =I= 0 ; n = 01 (\ ... /\ ok 

or in other words 

• 01, ... 'ok, 01, ... 'ek are linearly independent. 

• w is non-degenerate when restricted to the real (2n - 2k)-dim subspace 

6 c V where 6 = Ker (!2 /\ fl). 

Example 1.3.6. (symplectic type k = 0) 

The generalized complex structure determined by a symplectic structure w is 

_ (0 -w-1
) Jw -

w 0 

where the matrix is written in the splitting V EB V*. In fact, .:J; = -1 and :J,; = -:Jw, 

The i-eigenspace of Jw is the maximal isotropie L = {X - iw (X) : XE V® C} 

which is the Clifford annihilator of the spinor line generated by 

This generalized complex structure has type k = 0 (the codimension of the projection 

of L to V @C). 

Example 1.3. 7. ( complex type k = n) 

The generalized complex structure corresponding to a complex structure J is 

- (-] 0) JJ -
0 J* 
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where the matrix written in the splitting V E9 V* . In fact, :TJ = -1 and :Tj = -JJ. 

The i-eigenspace of JJ is the maximal isotropie L = v0,1 E9 V 1•0* where v1,0 is the 

i-eigenspace of the complex structure J. The space Lis the Clifford annihilator of 

the spinor line generated by 

PL = An (v1,o*) 

This generalized complex structure is of type k = n. 



CHAPTER II 

GENERALIZED COMPLEX MANIFOLDS 

After studying the pointwise structure of the generalized tangent bundle in the first 

chapter, we transfer all the properties studied to a manifold. Let M be a smooth 

manifold of dimension 2n, with the tangent bundle T, and consider the direct 

sum of the tangent and cotangent bundle T EEl T*. This generalized vector bundle 

is equipped with the same inner product and orientation described on V EEl V*, 

then T EEl T* have a natural structure group SO (n, n). We consider an extension 

of the Lie bracket of two vector fields. This is the Courant bracket which was 

introduced in the literature first by (Courant, 1990), in the context of his work 

with Weinstein to define Dirac structure. In generalized geometry, as well as in 

Dirac geometry, Courant bracket defines the integrability condition for different 

geometric structures. 

In the first section, we study Courant bracket on T EEl T*. Next, we describe the 

topological implication of having generalized complex structure on the manifold. 

After that, we state the Courant integrability condition. 
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2.1 The Courant bracket on T EB T* 

The Courant bracket is a skew-symmetric bracket defined on smooth sections of 

T EB T* by 

1 
[X+ ç, Y+ 77] = [X, Y]+ Cx77 - Cyç - 2d (ix77 - iyç) 

where X+ ç, Y+ 77 E C 00 (T E:B T*). 

Although the Courant bracket reduces on vector fields to the Lie bracket [X, Y] 

and vanishes on the 1-forms, it is not a Lie bracket since it fails to satisfy the 

Jacobi identity. The Courant bracket structure emerges from the interpretation of 

forms as spinors, where they can be obtained as a derived bracket of the differential 

operator d acting on differential forms. This is exactly analogous to the fact that 

the Lie bracket can be seen as a derived bracket of the exterior derivative d using 

Cartan's formulas 

Cx = ixd +dix= [d, ix], i[x,YJ = [Cx, iy] 

which yield 

'l[X,Y] = [[d, ix], iy] 

Remark 2.1.1. We recall the definition of the Lie derivative of a differential form, 

suppose <pt is the one-parameter (locally defined) group of diffeomorphisms defined 

by a vector field X. Then there is a naturally defined Lie derivative 

of a p-form aby X. It is again a p-form. Now, given a vector field X on a manifold 

M, there is a linear map ix : OP(M) -+ nv-1(M) called .the interior product such 

that: ixdf = X(J) and ix (a/\ {3) = ix(a) /\ f3 + (-l)Pa /\ ix(f3) if a E OP(M). 
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The Courant bracket on T EB T* is a natural extension of the Lie bracket of vector 

fields but acting via the Clifford action 

[u, v] · p = [[d, u·] , v·] p 

for u, v E C 00 (T EB T*) , p E /\ •v*. The proof of the last identity is in the following 

lemma. 

Lemma 2.1.2. For any differential form p and any sections u, v E C 00 (T EB T*) we 

have the following identity 

[[d, u·], v·] p = [u, v] · p 

Proof. Let u = X +ç,v = Y +ry so that ixp = -ç /\p, iyp = -ry/\p then 

Z[X,Y]P 

showing that 

[.Cx, iy] p 

.Cx (-ry /\ p) - iy (d (-ç /\ p) + ixdp) 

-.Cx (TJ /\ p) - rJ /\ (d (-ç /\ p) + ixdp) 

-iy (-dç /\ p + ç /\ dp + ixdp) 

(-.CxrJ + iydç) /\ p - (iy + ry/\) (ix + ç/\) dp 

(-LxrJ + iydç) /\ p + U ·V· dp 

[u, v] · p = (u o v) · p = u · v · dp = [[d, u·], v·] p 

D 

Courant bracket is also invariant under the action of the usual symmetries of 

Lie bracket: diffeomorphisms of the manifold M. In addition, there are extra 

symmetries which are B-field transformations. We have seen that the B-field action 

is the orthogonal transformation eB (X+ ç) =X+ ç + ixB. 
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Proposition 2.1.3. If B E /\ 2T* is a closed 2-form, then its action on sections of 

T EB T* commute with the Courant bracket. 

Proof 

[e8 (X+ç),e8 (Y+77)] = [X+ç+ixB,Y+17+zyB] 

= [X+ ç, Y+ 17] + [X, iyB] + [zxB, Y] 
1 

[X+ ç, Y+ 17] + CxiyB - 2dixiyB 

1 
-1:,yixB + 2dzyixB 

[X+ ç, Y+ 17] + CxiyB - iyCxB + iyixdB 

[X+ ç, Y+ 17] + i[x,YJB + iyixdB = 

e8 ([X+ ç, Y+ 17]) + iyixdB 

and when Bis closed, then dB= 0 =} iyixdB = 0; \:/X, Y 

and so 

[e8 (X+ ç), e8 (Y+ 77)] = [X+ ç, Y+ 17] + i[x,YJB = e8 ([X+ ç, Y+ 17]) 

D 

Thus, a closed 2-form B acts also preserving the Courant bracket, which means 

that we have an action of the semi-direct product of the closed 2-forms with 

diffeomorphisms 

Sym (T EB T*, (·, ·), [·, ·]) = il~1 (M) ~ Diff (M) 

where the first piece is a local point-wise transformation and the second is a global 

transformation. 
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The infinite dimensional Lie algebra of the extended group fl~1 (M) ~ Diff (M) 

consists of sections X + B of T EB /\ 2T* where B is closed. Let u = X + ç 
be a section of T EB T* or a generalized vector field. If we take B = -dç then 

u = X - dç E Lie (n:1 (M) ~ Diff (M)). We can regard the map u-+ u given by 

X + ç -+ X - dç as the Lie derivative Lu in the direction of the generalized vector 

field u E C 00 (T EB T*). The Lie algebra action of u on v =Y+ ri is 

u · v = (X - dç) ·(Y+ rJ) = Lx (Y+ ri) - iydç = [X, Y]+ Lxri - Lyç + d (iyç) 

which is a non- skew symmetric version of the Courant bracket, and so by skew­

symmetrization we can recover the Courant bracket, 

1 ((u · v) - (v · u)) = 1 ((X - dç) ·(Y+ ry) - (Y - dri) ·(X+ ç)) 

1 
2 ([X, Y]+ Lxri - Lyç + d (iyç)) 

1 +2 ([Y, X] - Lyç + LxrJ - d (ixri)) 

= [X+ ç, Y+ ri]= [u, v] 

Nevertheless, although Courant bracket is derived this way from a Lie algebra 

action, it is not itself a bracket of any Lie algebra since the Jacobi identity fails as 

mentioned before. 

2.2 Generalized almost complex structures and Courant integrability condition 

We define a generalized almost complex structure as following, 

Definition 2.2.1. A generalized almost complex structure is a differentiable bundle 

automophism .:J : TPM EB r; M -+ TPM EB r; M which is a linear generalized 

complex structure on each fi.ber of the generalized bundle T EB T*. 

Toplogically, a generalized complex structure is a reduction to U(n, n), which is 

homotopie toits maximal compact subgroup U(n) x U(n). Thus, U(n, n) structure 
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is reduced to U(n) x U(n). Geometrically, this can be interpreted as a choice of a 

positive definite sub-bundle C+ C T EEl T* which is complex with respect to :f. The 

orthogonal complement C_ = C.:f: is negative-definite and also complex. Therefore 

we have an orthogonal decomposition 

T EEl T* = C+ EEl C_ 

Because C+ and C_ are definite and T is null, the projection 1rr : C± -+ T is 

an isomorphism, and we can transfer the complex structure on C± to T. This 

give us two almost complex structures J+, J_ on T. In addition, we have seen in 

Example 1.3. 7 that if a manifold admits an almost complex structure, it actually 

admits a generalized almost complex structure of type n ( we called it the complex 

type). Consequently, a generalized almost complex structure exists on a manifold 

if and only if an almost complex structure does, and we can deduce the following 

important corollary, 

Corollary 2.2.2. (Theorem 4.15 in (Gualtieri, 2004)) 

The obstruction to the existence of a generalized almost complex structure is the 

same as that for an almost complex structure, which itself is the same as that for a 

nondegenerate 2-form (almost symplectic structure). 

We proceed now to the integrability condition: 

Definition 2.2.3. A generalized almost complex structure :1 is said to be integrable 

to a generalized complex structure when its +i-eigenbundle L C (T EEl T*)@ (C is 

Courant involutive. i.e., Sections of the subbundle L defined by the +i-eigenspaces 

of :1 are closed under the Courant bracket. 

Fact 2.2.1. The obstruction for a generalized complex structure to be integrable is 

tensorial. In other words, if [u, v] is a section of L, so is [u, fv]. 
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Proof. The main reason is that L is isotropie with respect to the inner product. 

Indeed, If .J u = iu then 

i (u, u) = (.Ju, u) = - (u, .Ju) = -i (u, u) 

Using the property of the Courant bracket: 

[u, fv] = f [u, v] + (Xf)v - (u, v) df 

If u, v are sections of L then (u, v) = O. Then, [u, fv] = f [u, v] + (X f)v. 

Thus, if u, v, [u, v] are sections, so is [u, Jv]. D 

We have seen that the generalized tangent bundle T E9 T* have a natural structure 

group SO(n, n). We consider without proof the fact that this SO(n, n)-bundle 

always adroits Spin(n, n) structure. Then, we can view differential forms on a 

manifold M as spin representation of T E9 T*. Accordingly, we can characterize a 

generalized complex structure in terms of the so-called canonical bundle K. The 

subbundle L has rank n and is isotropie in a 2n-dimensional space. It is also of 

maximal dimension (For a nondegenerate inner product n is the maximal). For a 

spinor p, 

(v,v)p=v·v·p=O 

Thus, the space of v E W such that v · p = 0 is isotropie. Because to any. maximal 

isotropie subspace we can associate a one-dimensional space of pure spinors it 

annihilates, a generalized complex manifold has a complex line subbundle K of 

A •T* ® <C , which called the canonicat bundle. It consists of multiples of a pure 

spinor defining .J. The condition Ln L = 0 is equivalent to the Mukai pairing 

(p, p) i= o. 
Example 2.2.4. Let M be a complex manifold. The subspace generated by 

aa_, 8
8_, ••. , dz1 , dz2 , ... annihilates dz1 A dz2 A ... A dzm. This generates the usual 

z1 z2 

canonical bundle of a complex manifold. 
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Example 2.2.5. The tangent space T annihilates 1 by Clifford multiplication. Thus, 

for a symplectic manifold, the transform of T by -iw annihilates the form eiw 

where the canonical bundle K is trivialized by this form. 

The following theorem has been proved in (Hitchin, 2010), which give us the 

integrability condition in this context: 

Theorem 2.2.6. Let p be a form which is a pure spinor such that (p, p) f=- 0 

Then p defines a generalized complex structure if and only if dp = e · p for some 

local section e E r . 

Remark 2.2.7. The simplest use of this integrability is when there is a global closed 

form which is a pure spinor. Such manifolds are called generalized Calabi- Yau 

manifolds. They include Calabi-Yau manifolds such that the holomorphie n-form 

is p, and symplectic manifolds where p = eiw. 

In the following examples, we see that the integrability condition on generalized 

almost complex structures yields the classical conditions on symplectic and complex 

structures. 

Remark 2.2.8. By type of the generalized complex structure on the manifold, we 

mean the codimension of E = 1rr(L)T@ C. This type might not be constant 

throughout the manifold. 

Example 2.2.9. Let M be a complex manifold with an almost complex structure. 

This almost complex structure induces a generalized almost complex structure 

with i-eigenspace T0•1 M EB T 1•0 M. If this generalized almost complex structure is 

integrable, then T0•1 M has to be closed with respect to the Lie bracket. Thus, the 

almost complex structure is actually a complex structure. Conversely, any complex 

structure gives rise to an integrable generalized complex structure. 
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Example 2.2.10. Let M be a complex manifold. If it has a non-degenerate 2-form 

w, then the induced generalized almost complex structure is integrable if for some 

X + ç we have deiw = (X + ç) · eiw. The degree 1 part gives that ixw + ç = 0 and 

the degree 3 part, that dw = 0 and hence M is a symplectic manifold. 

Example 2.2.11. (Example 1.24 in (Cavalcanti, 2007) ) 

Consider C2 with complex coordinates z 1, z2. The differential form p = z1 +dz1/\dz2 

is equal to dz1 /\ dz2 along the locus z1 = 0, while away from this locus it can 

be written as p = z1 exp( dzi/\dz2 ). Since it also satisfies dp = -82 · p, we see that 
z1 

it generates a canonical bundle K for a generalized complex structure which has 

type 2 along z1 = 0 and type O elsewhere, showing that a generalized complex 

structure does not necessarily have constant type. In order to obtain a compact 

type-change locus we observe that this structure is invariant under translations 

in the z2 direction, hence we can take a quotient by the standard Z2 action to 

obtain a generalized complex structure on the toms fibration D2 x T 2 , where D 2 is 

the unit dise in the z1-plane. Using polar coordinates, z1 = re21r01 , the canonical 

bundle is generated, away from the central fibre, by 

exp(B + iw) exp(d logr + id()1)(d()2 + id()3) 

exp ( d log r /\ d()2 - d()1 /\ d()3 + i ( d log r /\ d()2 - d81 /\ d()3)) 

where ()2 and ()3 are coordinates for the 2-torus with unit periods. Away from r = 0, 

therefore, the structure is a B-field transform of a symplectic structure w, where 

B d log r /\ 82 - d()1 /\ ()3 

w d log r /\ 83 + d()1 /\ ()2, 

The type jumps from O to 2 along the central fibre r = 0, inducing a complex 

structure on the restricted tangent bundle, for which the tangent bundle to the 

fibre is a complex sub-bundle. 
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Remark 2.2.12. Since we know the Lie algebra action of spin(n, n) on forms and 

:1 E spin( n, n), we can compute its action on forms. For example, in the case of a 

generalized complex structure induced by a symplectic form w, we have :1 is the 

sum of the 2-form w, and a bivector -w-1 . Hence its Lie algebra action on a form 

p is J p = i(-wl\-w-l)P . 



CHAPTERIII 

GENERALIZED COMPLEX STRUCTURES ON NILMANIFOLDS 

In this chapter we introduce some interesting examples of generalized complex 

structures on Lie algebra, in which Courant bracket on the Lie algebra g is a Lie 

bracket on g EB g*. Hence, finding a generalized complex structure on g is equal to 

the search for a complex structure on g EB g* orthogonal with respect to the natural 

pairing endowed with. In (Cavalcanti et Gualtieri, 2004), they proved that each 

6-dimensional nilpotent Lie algebra admits a generalized complex structure. A 

classification of which of those algebras admit complex or symplectic structures 

was done before in (Salamon, 2001; Goze et Khakimdjanov, 2010), and according 

to them, 5 nilpotent Lie algebras does not admit neither (left invariant) complex 

nor symplectic structures. Luckily, these 5 examples are the first exotic examples 

of generalized complex structures Gualtieri & Cavalcanti have produced. Moreover, 

(de Andrés et al., 2007) have related left invariant generalized complex structures 

on Lie groups to Hermitian structures on cotangent Lie groups as we present in 

this chapter. 

3.1 Lie algebras and Lie groups 

Definitions 3.1.1. A real Lie group is a set G with two structures: Gis a group 

and G is a manifold. The two structures are compatible in the following sense: 



43 

• multiplication map G x G -t G is a smooth map. 

• inversion map G -t G is a smooth map. 

Lie groups are so frequently studied because they usually appear as symmetry 

groups of various geometric objects. Therefore, we study the action of Lie groups 

on manifolds and representations 

Definitions 3.1.2. An action of a real Lie group G on a manifold M is an 

assignment to each g E G a diffeomorphism p(g) E Diff(M) such that p(l) = li, 

p(gh) = p(g)p(h) , and such that the map 

GxM -t M 

(g, m) t-+ p(g) · m 

is a smooth map. 

A representation of a real Lie group G is a vector space V ( either real or complex) 

together with a group morphism p : G -t End(V). If V is finite-dimensional, we 

require that p be smooth (respectively, analytic), soit is a morphism of Lie groups. 

In other words, we assign to every g E G a linear map p(g) : V -t V so that 

p(g)p(h) = p(gh). 

Important examples of group action are the following actions of G on itself: 

1. Left action: L 9 : G -t G, defined by Lg(h) = gh 

2. Right action: R9 : G -t G, defined by Rg(h) = hg-1 . 

3. Adjoint action: Ad9 : G -t G, defined by Adg(h) = ghg- 1 • 
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where the left and right actions commute and Ad9 = L9 R9 . 

A vector field X E Vect(G) is left-invariant if g.X = X for every g E G, and 

right-invariant if X · g = X for every g E G. A vector field is called bi-invariant if 

it is both left and right-invariant. 

Definition 3.1.3. A Lie algebra over a field Il( (OC=:IR or C) is a vector space g over 

Il( with a OC-bilinear map called Lie bracket [., .] : gxg-+ g which is skew-symmetric: 

[X, YJ = -[Y, X] and satisfies Jacobi identity 

[X, [Y, Zl] = [[X, Y], Z] + [Y, [X, Z]] 

Let G be a real Lie group. Then g = TnG has a canonical structure of a Lie algebra 

over Il( with the Lie bracket. We will denote this Lie algebra by Lie(G). 

A subspace ~ C g is called a Lie subalgebra if it is closed under the Lie bracket, 

i.e. for any X, Y E ~' [X, Y] E ~- A subspace ~ C g is called an ideal if for any 

X E g, Y E ~' we have [X, Y] E ~-

For any real or complex finite-dimensional Lie algebra g, there is a unique ( up 

to isomorphism) connected simply-connected Lie group G (respectively, real or 

complex) with Lie( G) = g. 

An interesting application of the correspondence between Lie groups and Lie 

algebras is the interplay between real and complex Lie algebras and groups. 

3.1.1 Complex structure and complexification of a Lie algebra 

Let g be a complex Lie algebra, consider g as a real vector space, the natural 

complex structure J defined by Jv = iv, satisfies 
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(This is equivalent to say the complex structure J commutes with the adjoint 

representation, Vv1, V2 E 9: J o adv1 (v2) = adv1 (v2) o J, where adv1 (v2) = [v1, v2]). 

Conversely, suppose 9 is a real Lie algebra with a complex structure J on the 

underlying vector space, such that J commutes with the adjoint representation. 

Then we can get a complex Lie algebra by defining the scalar multiplication as 

follows: 

(a+ ib)v =av+ bJv; a, b E IR. 

and the Lie bracket would be complex bi-linear. The complex structure satisfying 

the above additional condition is called sometimes ad-invariant complex structure. 

The complexification of 9 is the Lie algebra 91C = 9 0 C such that [v1 0 a, v2 ® b] = 

[v1, v2] 0 ab; v1, v2 E 9, a, b E C. This complexification yields a decomposition 

91C = 91,0 EB 9°,1 into the =fi eigenspaces of the complex linear extension of J. The 

projection 9 -+ 91•0 is a canonical isomorphism of complex vector spaces. The 

exterior algebra of the dual vector space 9*decomposes as: 

Ak9* = E9 AP9*1,o 0 Aq9*0,1 = E9 AP,q9* 
p+q=k p+q=k 

Definition 3.1.4. A left invariant complex structure on a real Lie group G is 

a complex structure on the underlying manifold such that left multiplication by 

elements of the group are holomorphie. Equivalently, there exists an endomorphism 

JE End (9), where 9 = Lie (G), such that: J2 = -JI and J is integrable. 

Definition 3.1.5. An almost complex structure Jona real Lie algebra 9 is said 

to be integrable if the Nijenhuis tensor vanishes. i.e., 

NJ(X, Y)= [X, Y]+ J[JX, Y]+ J[X, JY] - [JX, JY] == 0,\/X, Y E 9 
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The pair (g, J) is called a Lie algebra with complex structure. Equivalently, J 

is integrable if and only if g1•0 (and hence g0•1) satisfying the decomposition in 

Example 3.1.1, gC = g1•0 EB g0•1 is a complex subalgebra of gc. 

Remark 3.1.6. Let G be a real Lie group with Lie algebra g. Giving a left-invariant 

almost complex structure on G is equivalent to giving an almost complex structure J 

on g. In addition J is integrable if and only if it is integrable as an almost complex 

structure on G. It then induces a complex structure on G by the Newlander­

Nirenberg theorem and G becomes a complex manifold and the elements of G act 

holomorphically by left multiplication. Whereas, G is not a complex Lie group in 

general. 

Corollary 3.1.7. We can specify a complex structure on a given Lie algebra either 

by giving an endomorphism J on the basis of g such that J2 = -IT , or by giving a 

complex subalgebra ~ C gc such that ~ n ÎJ = 0 and ~ EB ÎJ = gc. 

3.1.2 Hermitian structures on Lie algebras 

Let g be a real Lie algebra with an ad-invariant1 complex structure J on the 

underlying vector space. Let h be a Hermitian inner product on the underlying 

vector space with respect to J. We call the pair (J, h) a Hermitian structure on 

g. If h denotes also the extension to a complex symmetric bi-linear form on the 

underlying vector space of glC = g1•0 EB g0•1 , then both g1•0 and g0•1 are isotropie 

with respect to the extension h on gc (since J is orthogonal). Moreover, these 

subalgebras are maximal isotropie since h is non-degenerate. Conversely, if B is a 

complex symmetric bilinear form on gc and q is a complex subalgebra of gc, then 

the pair (q, B) gives rise to a Hermitian structure (J, h) on g if q is a maximal 

B-isotropic and glC = q EB ëj. 
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3.2 Hermitian structures on cotangent Lie groups 

The cotangent bundle T*G of a Lie group G with Lie algebra g has a canonical Lie 

group structure induced by the coadjoint action of G on g*. It has also a canonical 

ad-invariant metric h defined by 

h ((X, a), (Y,,B)) = ,B (X)+ a(Y), X, Y E g, a, ,BE g* 

Hermitian structures on T*G with respect to h where left translations are holo­

morphie isometries, are complex structures on g EB g* orthogonal with respect to 

the pairing on it. These complex structures are integrable, i.e. NJ = 0 such that 

J : g EB g* -+ g EB g*. Note that N J is defined with respect to the Lie bracket on 

g EB g* to be defined in a following construction. 

The action of G on itself Lg : G -+ G can be lifted to an action of G on TG given 

by dLg : TG -+ TG. Then, 

Definitions 3.2.1. A left invariant complex structure is an equivariant endomor­

phism of TG with respect to the lifted action of G given by left multiplication. 

A left invariant symplectic structure on G is an equivariant isomorphism w : TG -+ 

T*G where the action of G on T*G is L*g- 1 : T*G-+ T * G. 

A left invariant Hermitian structure on Gis a pair (J, h) of a left invariant complex 

structure J together with a left invariant Hermitian metric h. 

In this section we study a special type of left invariant Hermitian structures, those 

that defined on the cotangent bundle of Lie groups with respect to the canonical 

ad-invariant metric. 

Construction 3.2.2. Let g be a Lie algebra, and u is a g-module. We have a Lie 
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algebra homomorphism p: g-+ gl(t,). The semidirect product g t>< pt, has a Lie 

bracket defined by 

[(X,u), (Y,v)] = [X, Y]+ p(X)v- p(Y)u, X, Y E g,u,v Et, 

In particular, we take t, = g*and p = ad*, the coadjoint representation 

ad* : g -+ g[ (g*) 

ad* (X) (a) f-+ -a o ad (X), XE g, a E g* 

Let g t>< ad* be denoted by (T*g, ad*), called the cotangent algebra, such that the 

Lie bracket is defined by 

[(X, a), (Y, ,B)] = [X, Y] - ,Bo ad(X) + a o ad(Y), X, Y E g, a, ,BE g* 

and the canonical non-degenerate symmetric ad-invariant bi-linear form h defined 

in the beginning of the section. The sub-algebra g and the ideal g* are maximal 

isotropie in (T*g, h). 

Left invariant Hermitian structures on cotangent Lie group T*G are given by 

endomorphisms J: T*g-+ T*g. With respect to the decomposition g E& g* , J can 

be written in the following matrix 

such that 

1. J is integrable. 



3. Jr + J2J3 = -:rr, J1J2 = -(J1J2)*, J3J1 = (J3J1)*, 

Example 3.2.3. (Example 2.2 in (de Andrés et al., 2007)) 
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Let g be a 2n-dimensional Lie algebra with a complex structure J. Define .JJ on 

T*g by: 

.JJ(X, o:) = (J(X), J*(o:)), XE g, o: E g*, J* (o:) = o: o J 

In fact, .JJ is orthogonal with respect to the canonical pairing h on T*g. In 

addition, the integrability of J make .JJ a complex structure on the cotangent 

algebra (T*g, ad*). Thus, (.JJ, h) is a Hermitian structure on it. 

Example 3.2.4. (Example 2.3 in (de Andrés et al., 2007)) 

Let w : g-+ g* be a linear isomorphism. Let .Jw(X, o:) = (-w-1 (0:), w(X)) . In 

fact, .Jw is orthogonal with respect to the canonical pairing h if and only if w is 

skew-symmetric. In other words, w is symplectic on g. The integrability of .Jw is 

equivalent to 

w([X, Y]) = w(X) o ad(Y) - w(Y) o ad(X) 

Then, .Jw define a Hermitian structure on the cotangent algebra. 

3.3 Left invariant generalized complex structures on Lie groups 

According to the last section, Hermitian structures on T*G with respect to h are 

complex structures on g EB g* orthogonal with respect to the pairing on it. We 

can relate these structures to generalized complex structures by observing that 

g EB g* is the fiber at the identity component of the bundle TG EB T*G over G. If we 

can extend J above to TG EB T*G by lifting left multiplication in G, the Courant 

bracket when restricted to left invariant vector fields and left invariant 1-forms is 

given by 

[(X, ç), (Y, 17)] = [X, Y]+ Cx17 - Lyç - d(zx17...:. zyç) 
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On the Lie group G, consider the left action of on the generalized tangent bundle 

TG EB T*G induced by left multiplication of G on itself, 

,\ : G x (TG EB T*G) -+ G EB T*G 

(g,(X,a)) r+ ((dL9)1 X,(L;-1) 91 a),XETjG,g,fEG 

Definition 3.3.1. A generalized complex structure .J on G is said to be left 

invariant if .J : TG EB T*G -+ TG EB T*G is equivariant with respect to the 

induced left action of G onTG EB T*G. i.e., for any g E G, the following diagram is 

commutative: 

TgG EB T* gG ~ TgG EB T* gG 

! >..g-1 >..g-1 ! 
:Je 

g EB g* g EB g* 

Proposition 3.3.2. (Proposition 3.1 in (de Andrés et al., 2007)) 

There is a one-to-one correspondence between left invariant generalized complex 

structures on Gand Hermitian structures (J, h) on T*G, where h is the canonical 

hi-invariant metric on T*G. 

Proof By identifying the space of left invariant sections of TG EB T*G with g EB g*, 

the restriction of Courant bracket to g EB g* is precisely the Lie bracket on the 

cotangent algebra (T*g, ad*). Concequently, Courant integrability condition of left 

invariant generalized complex structure .J on G is equivalent to the integrability 

of Je on the cotangent algebra (T*g, ad*). Moreover, if .J is a left invariant 

generalized complex structure on G, (Je, h) is a Hermitian structure on T*g, since 

.J is orthogonal with respect to h if and only if le is invariant by h. (this is because 
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Àg, g E G isometries of h· on the generalized tangent bundle). Conversely, given 

a Hermitian structure (J, h) on (T*g, ad*), we can it extend it to a left invariant 

generalized complex structure :1 on G such that :Je = J. D 

Remark 3.3.3. As shown in the examples: 3.2.3 and 3.2.4, If G has left invariant 

complex or symplectic structure, then each of them induces a left invariant general­

ized complex structure on G. Now, using the previous proposition, a Hermitian 

structure on the cotangent algebra with respect to h is a generalized complex 

structure on g and denoted by (:J, h). 

3.4 Nilmanifolds 

we begin by defining the object of our study, nilmanifolds. 

Definition 3.4.1. A nilmanifold is a compact homogeneous space of the form 

N /f, where N is a simply connected nilpotent Lie group and r is a lattice in N 

(i.e. a discrete co-compact subgroup). 

Definition 3.4.2. A nilmanifolds with left-invariant complex structure MJ is given 

by a triple (g, J, r c G) where g is a real nilpotent Lie algebra associated to a 

simply connected nilpotent Lie group G, J is an integrable complex structure on 

g and r is a lattice ( discrete cocompact subgroup). We will use the same letter 

MJ = M for the compact complex manifold G\r endowed with the left-invariant 

complex structure induced by J. 

We now address the question of the compatibility of the lattice r C G with the 

other two structures g and J. Most of the results originate from the work of (Malcev, 

1951). 

Definition 3.4.3. A rational structure of a nilpotent Lie algebra gis a subalgebra 

9Q defined over the rationals such that 9Q @ lR = g. 
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A subalgebra ~ cg is said to be rational with respect to a given rational structure 

91Q if 91Q = ~ n 91Q is a rational structure for ~- By a lattice in the Lie algebra g we 

mean a lattice in the underlying vector space which is closed under bracket and we 

say that r c G is induced by a lattice in g if log r is a lattice in g. 

Theorem 3.4.4. (Malcev) 

There exists a lattice in a nilpotent simply connected Lie group G if and only if the 

corresponding Lie algebra admits a rational structure. 

Example 3.4.5. Let ~1 be the 2(1) + 1-dimensional Heisenberg algebra, the Lie 

algebra with basis { X, Y, Z} whose pairwise brackets are equal to zero except for 

[X, Y]= Z. ~1 has a rational structure determined by ~l,IQ = Q-span{X, Y, Z} 

The Hiesenberg group: 

is a nilpotent Lie group ( closed subgroup of GL(3, JR) ). The corresponding lattice 

in Heis3 is: 

and Heis3 /r is a nilmanifold. 

Consider a Lie algebra g spanned by a basis e1 , ... , en- Then the Lie bracket is 

uniquely determined by structure constants afi such that [ei, ej] = ~;=1 afiek 

satisfying afi = -afi (encoding the Jacobi identity). Let (e1, ... , en) be the dual 
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basis, i.e. ei(ej) = Ôij· Then for any a E g* and X, Y E g we define 

da(X, Y) .- -a([X, Y]) 

and get a dual description of the Lie bracket by dé = - I,: afjeij where we 

ab breviate é A eJ = eij. The map d in duces a map on the exterior algebra A* g* 

and a2 = 0 is equivalent to the Jacobi identity. 

Remark 3.4.6. We will use a notation like ~2 = (0, 0, 0, 0, 12, 34) by which we mean 

the following: Let e1, ... , e6 be the Malcev basis for the Lie algebra and e1 , ... , e6 be 

the dual basis. Then, the defining relations for ~2 are given by de1 = de2 = de3 = 

de4 = 0, de5 = e12 = e1 A e2 , de6 = e34. In other words the bracket relations are 

generated by [e1 , e2] = -e5 and [e3, e4] = -e5. (The name ~2 is according to the 

classification of Salamon (Salamon, 2001)). 

The descending central series of a Lie algebra g is the chain of ideals defined 

inductively by g0 = g and gi = [gi-l, g] 'vi 2:'. 1. Recall that, g is s-step nilpotent if 

gs = 0 and gs-l =/- O. We call the finite number s the nilpotency index, nil (g) (or 

the nilpotency index of the g-nilmanifold). 

The nilpotency condition can be interpreted in terms of differential forms by defining 

subspaces {Yi} Cg* inductively as follows: 

Vo = {O}, Yi= {a E g*: da E A2Yi-1} ;i 2:'. l. 

Each space Yi is the annihilator of gi. We Choose a basis of Vi, then we extend 

it to a basis of Vi; 'vk. We obtain a Malcev basis { e1, ... , en} of g* such that 

dei E (e1, ... , ei-l) 'vi. 

We define the nilpotent degree of a p-form a, nil(a), to be the smallest i such that 

a E NK In addition, if ais a 1-form of nilpotent degree i then nil(da) = i - 1. 
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3.5 Generalized complex strustures on nilmanifolds 

In this section, we present the two propositions proved in (Cavalcanti et Gualtieri, 

2004): first, any left-invariant generalized complex structure on a nilmanifold is 

generalized Calabi-Y:au, i.e. the canonical bundle2 KL has a closed trivialization. 

Next, the type3 of a left-invariant generalized complex structure has an upper 

bound that depend only on the nilpotent structure. 

Let M be a 2n-nilmanifold, left-invariant generalized complex structures have 

constant type k throughout M, and its canonical bundle KL is trivial. Thus, we 

can choose a global trivialization p = eB+iw.n, where Band w are real left-invariant 

2-forms and n is a globally decomposable complex k-form, n = 01 A ... A Bk. Let 

X+ ç E r (T E9 T*) be a left-invariant section such that the integrability condition 

is satisfied, dp = ( X + ç) · p. If we order { 01 , ... , Bk} according to nilpotent degree, 

then it is possible to choose them such that nil(i) ~ nil(j), i < j, and such that 

{j : nil(j) > i} is linearly independent modulo \'i for each i. 

Lemma 3.5.1. (Lemma 3.2. in (Cavalcanti et Gualtieri, 2004)) 

Let V be a subspace of a vector space W. Let a E NV, and suppose { 1, ... , m} C W 

are linearly independent modulo V. Then a A 01 A ... A Bm = 0 if and only if a= O. 

Proof Let 1r : W -+ W /V be the projection, and choose a splitting W ~ V E9 

W /V such that a A 01 A ... A Bm has a component in NV 0 Am (W /V) equal to 

a A 7r (B1) A ... A 7r (Bm) = 0 which vanishes if and only if a= O. D 

Proposition 3.5.2. (Theorem 3.1. in (Cavalcanti et Gualtieri, 2004)) 

2cf. Definition 1.3.4. 

3cf. Definition 1.3.4 and Remark 2.2.8. 
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Any left-invariant generalized complex structure on a nilmanifold must be general­

ized Calabi-Yau. That is, any left-invariant global trivialization of the canonical 

bundle must be a closed differential form. In particular, any left-invariant complex 

structure has holomorphically trivial canonical bundle. 

Proof (sketch) 

Let p = eB+iw[l be the left-invariant trivializationof the canonical bundle such that 

its k- decomposables are ordered according to nilpotent degree as mentioned above. 

We use the integrability condition to deduce that the form is closed. 

dp = (X +ç) · p 

d ( eB+iw) = (X+ ç). ( eB+iw) 

d(B+iw)tdt+dil = (ix(B+iw))/\fl+ixil+ç/\fl 

Which can be devided into two parts: the (k+ 1)-degree part, d[l = (ix (B + iw)) /\ 

il+ ç /\ il. By wedging with ei and applying lemma 3.5.1, we conclude that 

dei /\ e1 A ... A ej = o, j < i, Vi 

hence, d[l = O. For the (k + 3)-degree part, 

d(B+iw)/\fl = 0 

eB+iwd[l = Ü 

dp = 0 

D 

Remark 3.5.3. Integrability condition imposes constrains on pas well as the non­

degeneracy condition does on ei appearing in the decomposition of il . In other 

words, if Bi, ... , ej EV;, then nondegeneracy implies that dim (l-'i) ~ 2j. For a fixed 

_____L__ _____ _ 
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nilpotent algebra, this places an upper bound on the number of j which can be 

chosen from each ~- Another strong constrain is imposed on the 1-forms (h If 

dim VJ+i/VJ = 1 occurs in a nilpotent Lie algebra, then either some i has nilpotent 

degree j, or no i has nilpotent degree j + 1. To conclude, the size of the nilpotent 

steps dim VJ+i/VJ constrains the possible types of left-invariant generalized complex 

structures. This was proven in (Cavalcanti et Gualtieri, 2004) in the following 

proposition, 

Proposition 3.5.4. (Theorem 3.2. in (Cavalcanti et Gualtieri, 2004)) 

Let M 2n be a nilmanifold with associated Lie algebra g. Suppose there exists a 

j > 0 such that, Vi 2: j, dim(~+i/~) = 1. Then M cannot admit left-invariant 

generalized complex structures of type k for k 2'. 2n - nil(g) + j. In particular, if 

M has maximal nilpotency index (i.e. dimVj_ = 2, dim~/~-l = lVi > 1), then it 

does not admit generalized complex structures of type k fork 2: 2. 

3.6 Generalized complex structures on 6-nilmanifolds 

The classification of 6-dimensional nilmanifolds has been clone in (Goze et Khakimd­

janov, 2010; Salamon, 2001), for those which admit left-invariant complex (type 3 

GC)4 and symplectic (type O GC)5 structures. In (Cavalcanti et Gualtieri, 2004), 

they completed the study for generalized complex structures of types 1 and 2 as 

follows. 

4cf. Example 1.3. 7 

5cf. Example 1.3.6 
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3.6.1 Generalized complex structures of type 2 

We have seen that a left-invariant structure of type 2 is given by a closed form 

p = exp(B+iw)B182 such that wA818/f182 # O. Using Proposition 3.5.4, we deduce 

that any 6-nilmanifold with maximal nilpotence step cannot admit a structure of 

this type. 

Example 3.6.1. (Lemma 4.1 in (Cavalcanti et Gualtieri, 2004)) 

A 6-nilmanifold that has nilpotent Lie algebra given by (0, 0, 0, 12, 14, - ), and has 

nilpotency index 4, does not admit left-invariant generalized complex structures of 

type 2 . 

.. Proof Suppose the nilmanifold admits a structure of type 2. The nilpotency index 

is 4, then dim~+1/~ = 1, i 2: 1. Using dp = 0, we see that 01 = .z1e1 + z2e2 + z 3e3 

and nil(2) 2: 2. Thus, 82 = w1e1 + w2e2 + W3e3 + w4e4. The conditions d(8182) = 0 

and 81828182 =/- 0 together gives Z3 = O. Moreover, the annihilator of 81028182 is 

generated by { e5 , e6}. So the nondegeneracy condition w2 A DA D =I- 0 implies that 

where k5 =/- 0 and a E A2 (ei, .. , e5). Using the structure constants, we see that d 

must have a nonzero multiple of e6 , and soit is not closed. 0 

In a similar way, it is shown in (Cavalcanti et Gualtieri, 2004) that: 

Example 3.6.2. Nilmanifolds associated to the algebras defined by 

(0, 0, 0, 12, 14, 13-24), (0, 0, 0, 12, 14, 23+24) do not admit left-invariant generalized 

èomplex structures of type 2. 

Example 3.6.3. Nilmanifolds associated to the algebras defined by 

(0, 0, 12, 13, 23, 14), (0, 0, 12, 13, 23, 14 - 25) do not admit left-invariant generalized 

complex structures of type 2. 



58 

Based on that, they deduced the following: 

Corollary 3.6.4. (Theorem 4.1. in (Cavalcanti et Gualtieri, 2004)) 

The only 6-dimensional nilmanifolds not admitting left-invariant generalized com­

plex structures of type 2 are those with maximal nilpotency index and those 

excluded by the previous three examples. 

3.6.2 Generalized complex structures of type 1 

A left-invariant structure of type 1 is given by a closed form p = exp( B + iw )B1 such 

that w2 A 01()1 =/= O. In other words, w is a symplectic form on the 4-dimensional 

leaves of the foliation determined by B1 A B1. 

Corollary 3.6.5. (Theorem 4.2. in (Cavalcanti et Gualtieri, 2004)) 

The only 6-nilmanifolds which do not admit left-invariant generalized complex 

structures of type 1 are those associated to the algebras defined by 

(0, 0, 12, 13, 23, 14) and (0, 0, 12, 13, 23, 14 - 25). 

A complete table of classification's result can be found in ( Cavalcanti et Gualtieri, 

2004), in which they listed explicit examples of all types of left-invariant generalized 

complex structures whenever they exist. 

According to the correspondence described in Section 3.3, and using the fact 

that every six dimensional nilpotent Lie group admits a left invariant generalized 

complex structure, we can deduce the following, 

Corollary 3.6.6. The cotangent algebra (T*g, ad*) of any six dimensional nilpotent 

Lie algebra g admits a Hermitian structure (J, h), where h is the canonical ad­

invariant metric on T*g. 
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